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Preface

Bioinformatics, being an interdisciplinary scientific field, has evolved significantly from the
simple analyses of few DNA/protein sequences to the handling of a large volume of entire
genomic sequences, proteomic and metabolomic networks, and complex genetic pathways
of biological samples.

Even further, huge advancements were made toward storing, handling, mining, comparing,
extracting, clustering and analysis as well as visualization of big macromolecular data using
novel computational approaches, machine and deep learning methods, and web-based serv‐
er tools. There are extensively ongoing  world-wide efforts to build the resources for region‐
al hosting, organized and structured access and improving the pre-existing bioinformatics
tools to efficiently and meaningfully analyze day-to-day increasing Big Data.

In this book, Bioinformatics in the Era of Post Genomics and Big Data, we intended to provide
the reader the latest advances of bioinformatics science in the era of post genomics and big
data. This is to motivate new generation researchers to efficiently mine this big data and
generate meaningful results, enabling “translational bioinformatics.”

Toward this goal, here we successfully compiled 9 chapters covering topics such as new
generation transcriptome assembly, gene expression analysis, genome-wide association,
novel approaches for mining genetic markers and visualization of biological sequences us‐
ing the latest advance in bioinformatics. Chapters also discussed advances in data modeling
and network-based systems using bioinformatics tools.

Although limited to specific topics, chapters do represent interesting aspects of bioinformat‐
ics studies of the present time, which should be useful and helpful for scientists, students
and readers of life science direction.

I would like to thank all the authors of the book chapters for their valuable contributions. I
would also like to thank the IntechOpen book department for giving me the opportunity to
work on this book project, and Ms. Maja Bozicevic, IntechOpen’s Publishing Process Manag‐
er, for her coordination of my book editing process.

Ibrokhim Y. Abdurakhmonov
Center of Genomics and Bioinformatics

Academy of Sciences of Uzbekistan
Tashkent, Uzbekistan
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Genome-Guided Transcriptomics, DNA-Protein
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Abstract

Nowadays, molecular biology has definitely become an interdisciplinary science. Toward
the study of the functions and the interactions of the biological molecules, such as nucleic
acids and proteins, computer science and engineering, along with chemistry and statistics,
are routinely engaged. In molecular biology, techniques and methods are constantly
developed, and new techniques emerge. Next-generation sequencing and bioinformatics
have become the cornerstones of molecular biology. The developing technologies have led
to a decrease of the cost per molecular unit analyzed, but at the cost of computer integra-
tion and intensification. Many research methods require a reference nucleic acid sequence.
Considering the necessary integration of sequencing data and methodology, combining
the “omics” approaches can help to elucidate more complex null hypotheses. Here, data
processing basics, with an emphasis to commonly used techniques, are summarized. The
knowledge gaps are discussed as well as further prospective for integrating next-
generation sequencing data.

Keywords: next-generation sequencing, data analysis, Unix, scripting

1. Introduction

The study of the functions and the interaction of the biological molecules such as nucleic acids
and proteins has become a daily laboratory routine. By recently, Sanger sequencing was
extensively used to uncover new genomic sequences. Sanger sequencing method was named
after Frederick Sanger (1918–2013), the British biochemist who invented it and won the Nobel
Prize in Chemistry for the second time (1980). Until now, the method is based on PCR ampli-
fication and capillary electrophoresis. Each sequencing reaction generates a ladder of ddNTP-
terminated, dye-labeled products, which then are submitted to high-resolution electrophoretic
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separation within one of 96 or 384 capillaries in one run of a sequencing instrument. The
generated fragments are labeled with fluorescent substances and pass the laser, which allows
the four different nucleotides to excite and emit different colors of the light spectrum. A
camera then captures the colors, and the results are extracted in various formats for further
analysis. The analysis of Sanger sequencing data is more or less a straightforward procedure.
The sequences can be optically validated and cross-checked through the chromatogram. High-
quality reads should not contain ambiguities, and the peaks must be well spaced. On the other
hand, poor quality reads have low signal/noise ratio, overlapping peaks and low confidence
score. Consequently, a comparison of our sequence can be done with Basic Local Alignment
Search Tool (BLAST) by NCBI. BLAST is the cornerstone of sequence analysis, since it facili-
tates the comparison among amino acid or nucleotide sequences.

Next-generation sequencing (NGS) is an emerging technology with high-throughput outcome.
Recently, the rapid development of high-throughput technologies has led to advances in the
study of genome function. High-throughput molecular techniques are generally used to study
nucleic acids of different species such as DNA, mRNA, lncRNA, etc. Typically, the nucleic
acids are fragmented, amplified (or not), and sequenced using various technologies. Although
nucleic acid extraction and sequencing are a typical workflow for many laboratories world-
wide, integrative software to deal with the analysis workflow in a user-friendly manner is
scarce. An intermediate user who is thinking about starting a new NGS project has to set up a
Unix-based server with the appropriate software toolkit in order to deal with a huge amount of
data. A basic knowledge of R programming language is essential, and the bioconductor project
includes an important amount of applications for NGS data processing [1]. Moreover, essential
knowledge of scripting languages (Perl, Python) is necessary. In a few words, the data
resulting from the sequencer have to be quality checked, filtered, and finally evaluated. This
can be achieved on a substantial bioinformatic level.

2. Transcriptomics

Transcriptome sequencing (transcriptomics) enables the characterization of all RNA transcripts
for a given organism, including both the coding mRNA and noncoding RNA. For many years,
our knowledge on the transcriptome was derived from cloning and sequencing of individual
cDNA sequencing. Therefore, it was limited, low-throughput, and partial. However,
transcriptomics with next-generation sequencing (NGS) and RNA-Seq is able to increase our
knowledge on the dynamic RNA landscape. Compared to the limited capability of Sanger
sequencing, a typical RNA-Seq experiment can provide an integrated snapshot of an organ-
ism’s transcriptome. Normally, regarding RNA-Seq, there are two major experimental setups:
de novo assembly of the transcriptome and reference-guided assembly. The former is adequate
either when reference genome (or transcriptome) is not available or we want to expand the
existing knowledge of an organism’s transcriptome. Furthermore, it is mainly utilized in
cancer transcriptomics to find fused transcripts or in organisms with trans-splicing. A typical
analysis pipeline is presented in Figure 1. mRNA sequencing has many advantages over con-
ventional methods. Gene expression can be accurately quantified, and genes with alternative
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splice variants can be identified. Furthermore, reconstructing a transcriptome from short reads is
really challenging in terms of computer resources.

To ensure a high-quality transcriptome assembly, the design of the experiment should be
carefully designed. If differential expression analysis is planned, biological replication is vital.
As a rule of thumb, three to four biological replicates are adequate, but it depends upon the
specific experiments. Technical replicates are not essential, but can be used to check for any
barcoding effects on results. Usually, technical replicates are highly reproducible (e.g., [2]). In
Illumina platforms multiplexing samples are useful for two reasons. Firstly, if a lane fails to
produce data, it is still likely that many results from the other lanes can be extracted. Secondly,
technical replicates are produced and barcoding effect can be determined.

The very first step upon the receipt of the sequenced data is a secure backup. No one wants to
lose precious samples and hundreds of man-hours due to a failure of a hard disk. Data can be
stored (and published) in public databases such as NCBI SRA. The reads can be recovered
from the database, and a set of metadata is available detailing the experimental conditions.

2.1. Material

A typical flowchart of RNA-Seq experiments usually includes RNA extraction, which must be
of high purity and integrity. Most sequencing companies recommend an RNA integrity num-
ber (RIN), using Agilent Bioanalyzer 2100 higher than 8. Except for difficult materials (i.e.,

Figure 1. Typical workflow of an RNA-Seq experiment.
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FFPE samples, fossils), normally preserved samples could easily achieve this score, with
standard extraction protocols. Two types of protocols are used for RNA extraction: affinity
based (in column) and organic extraction (phenol, chloroform, isoamyl alcohol). The former is
compatible with various sample types (animal tissue, plant cells, bacteria, yeast, etc.). Further-
more, DNAse treatment which eliminates contaminating genomic DNA is highly facilitated in
a column-based extraction. In this way, excellent RNA purity and integrity are achieved. In
addition, automated RNA extraction process is able to reduce working time and at the same
time provides opportunity in increasing reproducibility and quality of results [3]. Starting from
total RNA, two strategies are available for RNA-Seq: enrichment for mature transcripts using
poly(A) tails and depletion of abundant ribosomal sequences. In that way, mature mRNA is
abundant in the sample for further processing. Since rRNA represents the 80% of the total
RNA and mRNA is 5%, mRNA enrichment is crucial in order to achieve a decent sequencing
depth. Sequencing depth is the mean number of times that each nucleotide is sequenced. This
stands only for genome, where nucleotides remain relatively stable. For transcriptome, differ-
ential expression plus biases in sample processing and sequencing can result in genes with lack
of coverage.

2.2. Data quality control and filtering

There are numerous pipelines that check the quality of the data produced by the sequencer.
Although millions of reads are typically produced by high-throughput sequencers, simple
quality controls are essential in order to be sure that the data could be further processed. If
any problems or biases are spotted in the dataset, corrective measures can be taken in most
cases. FastQC [4] is a very fast and reliable application that can process different data formats
such as fastq, compressed fastq, SAM, and BAM. By using simple bash scripts, one could easily
analyze multiple datasets at once. FastQC can run in a graphical user interface (GUI) environ-
ments even in Unix platforms. An application designed to better group FASTQC result data in
whole experiments is FQC [5]. The results are stored in simple html files and can be viewed
with any web browser available. The output includes simple statistics such as the number of
reads, sequence length, etc. A more important statistic for the quality of the available reads is
the diagram of the quality score over the nucleotide position in the sequence. In the fastq
format, each read is tagged with a quality score known as Phred quality score. In general, a
Phred quality score of 10 means that there is a possibility of the called base being correct of
90%, 20 is 99%, 30 is 99.9%, etc. As a rule of thumb, bases with score over 20 are considered as
bases of good quality.

RNA-Seq reads need further preprocessing before assembly and gene expression analysis.
Usually, 50 or 30 ends present lower-quality or ambiguous sequences. Consequently, these reads
are trimmed at both ends. In case the reads have more low-quality or ambiguous nucleotides,
they are totally excluded from the analysis. Some good tools for the preprocessing of data
include PRINSEQ [6] and Trimmomatic [7]. Although rRNA is routinely removed during
library preparation, many sequences are present in raw reads. An efficient tool for rRNA
removal is SortMeRNA [8]. SortMeRNA leverages public rRNA databases such as SILVA [9]
and Greengenes [10], to identify rRNA sequences. Firstly, developed for metagenomic studies,
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the software has the ability to extract rRNA sequences in fastq files for further processing.
Although designed for single fastq files, two scripts that split and merge back paired-end files,
respectively, are provided. Another one critical step during sequence filtering is adapter and
primer removal from the dataset. One could combine adapter clipping with quality trimming
with Trimmomatic. Cutadapt [11] is definitely a dedicated tool for adapter and PCR primer
clipping and removing. The software supports flexible scanning and removal of contaminating
sequences.

Consequently, following the previous steps, the data could be used for further processing. In
each step, a quality control could be adequate to safeguard the efficiency of process. As a
result, the user is able to further process the data or repeat the step, with different settings,
until the results are satisfying.

2.3. De novo transcriptome versus genome-guided assembly

De novo transcriptome assembly is a computer-intensive process. Despite the constant
increase of available tools, transcriptome assembly from short reads still remains a very
challenging process. Probably, the most popular tool for transcriptome assembly is Trinity
[12]. Beyond assembly, Trinity incorporates many post-assembly tools which include assembly
QC, full-length transcript analysis, abundance, and differential gene expression analysis. Fur-
thermore, protein-coding analysis and functional annotation software are included.

Evaluating a de novo transcriptome assembly is really a hard job. There is a plethora of metrics
to assess the accuracy and completeness of a transcriptome assembly. Honaas et al. [13]
concluded that a combination of metrics can be used in the following order: a number of reads
mapping to the assembly; recovery of conserved, widely expressed genes; N50 length statistics;
and the total number of unigenes. A number of tools are available for this purpose such as
BUSCO [14], DETONATE [15], and TransRate [16].

On the other hand, reference-guided transcriptome assembly could be very solid. However,
the accuracy of reference-based transcriptome assembly depends on correct read alignment
and genetic variants such as alternative splice variants, CNVs, etc. Transcripts are distin-
guished from the reference genome by Cufflinks [17], and supporting applications in the suite
can be used for further analysis.

2.4. Read mapping and counting

The first major data processing step in sequencing studies for species with a reference genome
is the mapping of sequencing reads to the reference (genome or transcriptome). Mapping of the
reads is defined as the prediction of the loci from which the reads originate. There are many
alignment algorithms such as BWA [18] and Bowtie [19] which are unspliced read mappers
and TopHat [20] which is a spliced one. The choice of aligner often influences the final results,
as different algorithms show various false-positive and/or false-negative rates. There is no
single mapper that can align all reads to a reference. This could be due to sequencing errors or
polymorphic loci in the reference. Indeed, unmapped reads could be analyzed for identifica-
tion of such variants. After mapping, a consequential SAM (Sequence Alignment/Map) file
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result is typically converted to the compressed binary version BAM. This is typically achieved
with the samtools view command [21].

The differential expression analysis of NGS data includes the counting of the mapped reads on
the transcripts. The Trinity suite incorporates various applications for further analysis of
transcriptome data. Four tools are employed for read counting, namely, alignment-based tools
RSEM [22] and eXpress [23], as well as alignment-free kallisto [24] and salmon [25].

2.5. Differential expression analysis

The output from read counting is a matrix of raw counts that is used as input for R-based
software such as DESeq [26], DESeq2 [27], or edgeR [28]. Since each software draws upon
different statistical methods, differences in outputs may arise. Furthermore, there are available
capabilities of clustering the differentially expressed genes or plotting the results in diagrams.
One of the most favorite plots available is the heat map, where the expression of the genes is
presented in colors that distinguish the control from the treatment groups. Typically, a palette
of red and blue colors is used to indicate up- and downregulation, respectively. Finally, the
most important thing on the whole procedure is the discovery of genes (or gene clusters)
associated with the biological questions posed.

3. DNA-protein interactions

3.1. Introduction

Proteins bind DNA in order to regulate genome function. Among the proteins that bind DNA,
most characteristics are the transcription factors (TFs). Transcription factors regulate transcrip-
tion by switching on and off genes. They act either alone or synergistically with other proteins
as cofactors. Furthermore, groups of TFs function in a coordinated fashion to trigger many
fundamental genomic processes (cell division, cell death, development) and periodically in
reaction to signals coming from outside the cell.

DNA-protein interactions can be studied by using chromatin immunoprecipitation followed
by sequencing (ChIP-Seq) [29]. Accordingly, RNA-protein interactions can be unveiled using
cross-linking immunoprecipitation (CLIP), RNA-DNA interactions using CHART and CHiRP,
and DNA-DNA interactions (using 3C-based methods, including circularized chromosome
conformation capture (4C), chromosome conformation capture carbon copy (5C), Hi-C, and
chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) [30]. Further down,
we are going to focus on DNA-protein interaction methodology. During this step, our purpose
is to capture characteristic read distribution at the chromatin interaction sites and detect
significantly enriched regions.

3.2. Material

When conducting an immunoprecipitation experiment, probably the most major consider-
ation is the selection of the antibody. The antibody must be specific and work in chromatin
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immunoprecipitation. Both monoclonal and polyclonal antibodies are able to work with ChIP,
though monoclonal is usually more specific. On the other hand, polyclonal antibodies recog-
nize multiple epitopes on the targets.

This kind of assays starts with cross-linking DNA and protein. During this procedure, the
cross-linking substance penetrates intact cells and fixes DNA-protein complexes. The most
common stabilizer in ChIP is formaldehyde, and after stabilization chromatin is sheared in
fragments commonly 200–600 bp [31].

3.3. Methodology

Following sequencing the dataset has to be aligned on the reference. Typical aligners are used
such as Bowtie or BWA, and the corresponding SAM files are converted to their binary analogs
(BAM). The alignments can be visualized with the stand-alone genome browser IGV [32].
When uploading an alignment file to the browser, the browser is going to search for the
appropriate index file. To create the index file, the BAM file must be sorted according to its
chromosomal coordinates. The indexing can be achieved with samtools index.

Another way to visualize these alignments is through the BigWig format which is an indexed
binary format. Firstly, BAM is converted into a bedGraph file with BEDTools [33] and then is
turned into BigWig using the bedGraphtoBigWig application from the UCSC tools [34].
BEDTools include ready-to-use files for human and mouse genomes. These files can be loaded
in genomic viewers such as IGV and zoom in specific genes or chromosomal loci of interest.

MACS analysis [35] was first developed to identify transcription factor-binding sites. MACS
empirically models the length of the sequenced ChIP fragments and uses it to improve the
spatial resolution of predicted binding sites. MACS can be used for CHIP-Seq data alone or
with control sample to increase specificity. In that sense, control sample is highly
recommended to distinguish positive binding sites over background noise. Peak files gener-
ated fromMACS can be uploaded to Ensembl for further analysis. Furthermore, it is advised to
look at genes or regulatory elements that are located in proximity with identified regions.
PeakAnalyzer [36] is a stand-alone program for the processing of genomic loci, with an
emphasis on datasets consisting of ChIP-derived signal peaks. Gene ontology functional anno-
tation can be applied in the closest downstream genes. Finally, it is really interesting to
associate motif-binding sites with motifs or sequence patterns. These motifs can be compared
to known motifs available in databases such as JASPAR and UniPROBE.

4. Variant calling

4.1. Methodology

Polymorphisms are generally studied in biology, under the prism of various null hypotheses.
In population studies, genotype-trait associations, rare diseases and evolutionary biology, and
polymorphisms are studied to answer fundamental biological questions. The starting material
could be either DNA or RNA, depending on the experimental design. High-quality reads, high
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coverage, and a thorough bioinformatic pipelines are prerequisites to identify polymorphisms
on a solid basis.

Variant callers demand different preprocessing steps before the actual processing of insertions-
deletions (InDels), single-nucleotide polymorphisms (SNPs), and structural variants (SVs).
Typical steps include duplicate removals and local realignment. Picard tools by Broad Institute
include a Java-based set of command-line tool, including MarkDuplicates.jar command for the
removal of the duplicate reads. The documentation of the software provides an extended walk-
through and describes the metrics produced by the software.

Samtools mpileup is one of the options considered for variant calling. This option demands a
reference (either genome or transcriptome) in a FASTA file and the BAM file of the aligned
reads. The output is in VCF (variant call format) which is converted to its binary analogue
(BCF). Samtools scripts are available that can be used to filter for low mapping quality, low
coverage, gaps, and similar biases. All these artifacts are known to increase false-positive rates
in SNP calls. VCFtools software [37] has the ability to filter, merge, subset, and query VCF files.
Furthermore, it is able to produce simple descriptive statistics such as InDel length,
transversion/transition ratio, etc. All these results can be visualized either with simple tools
such as the tview command of the samtools package or with more sophisticated viewers such
as IGV [32].

4.2. Annotation

Raw variant calling files contain many false-positive results, which may be due to the sequence
quality of the reads, PCR artifacts, or other biases. Annotating these variations may mark these
SNVs as less confident. In addition, important mutations could be identified according to the
effect they bear on the genome. For these purposes, two potential applications are Annovar
[38] and SnpEff [39]. While the latter is able to use directly VCF files, Annovar uses a specific
input format that files should be converted to.

Using predefined gtf (general transfer format) models, all SNPs can be classified as synony-
mous, non-synonymous, loss of function, start loss, stop loss, start gain, start loss, etc.
according to their effect on the genome. The 1000 Genomes data as well as the dbSNP can be
used to extract data of features for annotated genomes. In case of non-model species, genes
should firstly be dully annotated. Finally, any important variants should be spotted using
Sanger sequencing for validation.

5. Perspectives

Although thousands of papers have been published, many things have to be done toward
integration of NGS data and processing. Most of the work done is not reproducible, and data
processing pipelines could not be shared among different experiments. Although guidelines
for result validation have been extensively reviewed [40–43], processing parameters should be
recorded thoroughly. The complexity of the NGS experiments demands complete description
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of the parameters through metadata; minimum information about any (x) sequence (MIxS)
creates a single-entry point to all minimum information checklists for sequence data [44].

Beside reproducibility issues, one could safely argue that NGS data processing is not actually
user-friendly. Expertise in informatics and more specifically in Unix-based systems is essential.
In that sense, biologists are able to handle sequencing data in association with computer
scientists. Furthermore, for assembly and annotation purposes, intense computing is needed
that diverges from personal computers’ capabilities. Therefore, small servers to large comput-
ing clusters need to be employed for processing. The development of graphical user interface
(GUI) software for NGS processing is essential. Furthermore, software suites that include all
steps of processing (QC, preprocessing, filtering, assembling, mapping, and differential analy-
sis) combined with machine learning systems could facilitate analysis from beginners or
intermediate computer users. In other words, more sophisticated software could propose the
user, according to the experiment and the data walk-through to analyze the dataset.
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Abstract

Accurate and comprehensive transcriptome assemblies lay the foundation for a range of
analyses, such as differential gene expression analysis, metabolic pathway reconstruction,
novel gene discovery, or metabolic flux analysis. With the arrival of next-generation
sequencing technologies, it has become possible to acquire the whole transcriptome data
rapidly even from non-model organisms. However, the problem of accurately assembling
the transcriptome for any given sample remains extremely challenging, especially in
species with a high prevalence of recent gene or genome duplications, those with alterna-
tive splicing of transcripts, or those whose genomes are not well studied. In this chapter,
we provided a detailed overview of the strategies used for transcriptome assembly. We
reviewed the different statistics available for measuring the quality of transcriptome
assemblies with the emphasis on the types of errors each statistic does and does not detect.
We also reviewed simulation protocols to computationally generate RNAseq data that
present biologically realistic problems such as gene expression bias and alternative splic-
ing. Using such simulated RNAseq data, we presented a comparison of the accuracy,
strengths, and weaknesses of nine representative transcriptome assemblers including
de novo, genome-guided, and ensemble methods.
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1. Introduction

Transcriptome assembly from high-throughput sequencing of mRNA (RNAseq) is a powerful
tool for detecting variations in gene expression and sequences between conditions, tissues, or
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strains/species for both model and non-model organisms [1, 2]. However, the ability to accu-
rately perform such analyses is crucially dependent on the quality of the underlying assembly
[3]. Especially for the detection of sequence variations, but also for isoform detection and
transcript quantification, mis-assembly of genes of interest can increase both the false positive
and false negative rates, depending on the nature of the mis-assembly [4]. These problems are
exacerbated in non-model organisms where genomic sequences that can be used as the refer-
ences, if available at all, are sufficiently different than those from the individuals sequenced [5].

Transcripts can be mis-assembled in several ways [6]. Two of the most drastic assembly errors
are fragmentation, where a single transcript is assembled as one or more smaller contigs, and
chimeras, where a contig is assembled using part or all of more than one transcript. Fragmenta-
tion errors tend to result from fluctuations in the read coverage along a transcript, with the
breaks in the transcript sequence occurring in regions that have lower coverage. By contrast,
chimera errors often occur because of ambiguous overlaps within the reads, coupled with
algorithms that choose the longest possible contig represented by the data, or by adjacent genes
on the genome being merged. Both of these types of errors can have major impacts especially on
gene identification. Small (single or few) nucleotide alterations to the contig sequence also
happen as mis-assemblies. Sequence mistakes are often the result of mis-sequenced reads, but
can also result from ambiguity for highly similar reads e.g. from heterozygous genes and from
duplicated genes. In some cases, these errors can shift the reading frame for the contig, which can
have significant impacts on the translated protein sequence. Finally, transcripts can be mis-
assembled when alternative transcripts are collapsed into a single contig [6].

In the following sections, we will first review strategies used for transcriptome assembly as well
as how their performance can be assessed. We then compare the performance of representative
transcriptome assembly methods using a simulated human transcriptome and RNAseq. Finally
we discuss a possible strategy to improve transcriptome assembly accuracy.

2. Transcriptome assembly strategies

2.1. De novo assemblers

De novo assemblers generate contigs based solely on the RNAseq data [7–13]. Most of the de
novo assemblers rely on de Bruijn graphs generated from kmer decompositions of the reads in
the RNAseq data [14]. The reads are subdivided into shorter sequences of a given length k (the
kmers) and the original sequence is reconstructed by the overlap of these kmer sequences. One
major limitation of the de Bruijn graphs is the need for a kmer to start at every position along
the original sequence in order for the graph to cover the full sequence [13]. This limitation
creates a tradeoff in regard to the length of the kmers. Shorter kmers are more likely to fully
cover the original sequence, but are more likely to be ambiguous, with a single kmer
corresponding to multiple reads from multiple transcripts. While by using longer kmers such
ambiguity can be avoided, those kmers may not cover the entire sequence of some transcripts
causing e.g. fragmented assembly. Consequently, each transcript, with its unique combination
of expression level (corresponding to the number of reads in the RNAseq data generated from
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that transcript) and sequence will have a different best kmer length for its assembly [15]. As a
result, even using the same de novo assembly algorithm, performing two assemblies with
different kmer lengths will generate a different set of contigs, inevitably with a varying set of
correctly assembled contigs [16].

Examples of popularly used de novo assemblers include idba-Tran [9], SOAPdenovo-Trans [8],
rnaSPAdes [12], and Trinity [7]. Idba-Tran is unique among these de novo assemblers, as it
runs individual assemblies across a range of kmer lengths and merges the results to form the
final prediction. The remaining assemblers use only the results of a single kmer length. For
SOAPdenovo-Trans and Trinity, a kmer length needs to be chosen (default kmer: 23 and 25,
respectively), while rnaSPAdes dynamically determines the kmer length to be used based on
the read data. While all of these tools use the same fundamental strategies to construct, revise,
and parse the de Bruijn graph for the assemblies, each method uses different thresholds and
different assumptions to make decisions. These differences lead to different subsets of tran-
scripts being correctly assembled by each method. An example of how these tools produce
different sets of contigs is shown in Section 4.2.

2.2. Genome-guided assemblers

Genome-guided assemblers avoid the ambiguity of kmer decompositions used in de Bruijn
graphs by mapping the RNAseq data to the reference genome. In order to account of introns,
mapping of the reads for genome-guided assembly needs to allow them to be split, where the
first part of the read maps to one location (an exon), and the other half maps to a downstream
location (another exon). This mapping is done by split-read mappers such as TopHat [17],
STAR [18], HISAT [19], or HPG-aligner [20]. Each of these methods maps the reads slightly
differently, which may impact the quality of subsequent assembly.

This read mapping greatly reduces the complexity of transcript assembly by clustering the reads
based on genomic location rather than relying solely on overlapping sequences within the reads
themselves [3]. However, this approach still has some major drawbacks. The most obvious
drawback is that genome-guided assemblers require a reference genome, which is not available
for all organisms. The quality of the reference genome, if it is available, also impacts the quality of
the read mapping and, by extension, the assembly. This impact is particularly noteworthy when
genes of interest contain gaps in the genome assembly, preventing the reads necessary to
assemble those genes from mapping to part or all of the transcript sequence. Ambiguity occurs
also when reads map to multiple places within a genome. How the specific algorithm handles
choosing which potential location a read should map to can have a large impact on the final
transcripts predicted [6]. This problem is expounded when working with organisms different
from the reference, where not all of reads map to the reference without gaps or mismatches.

Examples of popularly used genome-guided assemblers include Bayesembler [21], Cufflinks
[22], and StringTie [23]. While each of these methods uses the mapped reads to create a graph
representing the splice junctions of the transcripts, how they select which splice junctions are
real differs fundamentally. Cufflinks constructs transcripts based on using the fewest number
of transcripts to cover the highest percentage of mapped reads. StringTie uses the number of
reads that span each splice junction to construct a flow graph, constructing the transcripts
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the original sequence in order for the graph to cover the full sequence [13]. This limitation
creates a tradeoff in regard to the length of the kmers. Shorter kmers are more likely to fully
cover the original sequence, but are more likely to be ambiguous, with a single kmer
corresponding to multiple reads from multiple transcripts. While by using longer kmers such
ambiguity can be avoided, those kmers may not cover the entire sequence of some transcripts
causing e.g. fragmented assembly. Consequently, each transcript, with its unique combination
of expression level (corresponding to the number of reads in the RNAseq data generated from
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that transcript) and sequence will have a different best kmer length for its assembly [15]. As a
result, even using the same de novo assembly algorithm, performing two assemblies with
different kmer lengths will generate a different set of contigs, inevitably with a varying set of
correctly assembled contigs [16].

Examples of popularly used de novo assemblers include idba-Tran [9], SOAPdenovo-Trans [8],
rnaSPAdes [12], and Trinity [7]. Idba-Tran is unique among these de novo assemblers, as it
runs individual assemblies across a range of kmer lengths and merges the results to form the
final prediction. The remaining assemblers use only the results of a single kmer length. For
SOAPdenovo-Trans and Trinity, a kmer length needs to be chosen (default kmer: 23 and 25,
respectively), while rnaSPAdes dynamically determines the kmer length to be used based on
the read data. While all of these tools use the same fundamental strategies to construct, revise,
and parse the de Bruijn graph for the assemblies, each method uses different thresholds and
different assumptions to make decisions. These differences lead to different subsets of tran-
scripts being correctly assembled by each method. An example of how these tools produce
different sets of contigs is shown in Section 4.2.
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differently, which may impact the quality of subsequent assembly.

This read mapping greatly reduces the complexity of transcript assembly by clustering the reads
based on genomic location rather than relying solely on overlapping sequences within the reads
themselves [3]. However, this approach still has some major drawbacks. The most obvious
drawback is that genome-guided assemblers require a reference genome, which is not available
for all organisms. The quality of the reference genome, if it is available, also impacts the quality of
the read mapping and, by extension, the assembly. This impact is particularly noteworthy when
genes of interest contain gaps in the genome assembly, preventing the reads necessary to
assemble those genes from mapping to part or all of the transcript sequence. Ambiguity occurs
also when reads map to multiple places within a genome. How the specific algorithm handles
choosing which potential location a read should map to can have a large impact on the final
transcripts predicted [6]. This problem is expounded when working with organisms different
from the reference, where not all of reads map to the reference without gaps or mismatches.

Examples of popularly used genome-guided assemblers include Bayesembler [21], Cufflinks
[22], and StringTie [23]. While each of these methods uses the mapped reads to create a graph
representing the splice junctions of the transcripts, how they select which splice junctions are
real differs fundamentally. Cufflinks constructs transcripts based on using the fewest number
of transcripts to cover the highest percentage of mapped reads. StringTie uses the number of
reads that span each splice junction to construct a flow graph, constructing the transcripts
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based in order of the highest flow. Bayesembler constructs all viable transcripts for each splice
junction and uses a Bayesian likelihood estimation based on the read coverage of each poten-
tial transcript to determine which combination of transcripts is most likely. Due to these
fundamentally different approaches, each of these tools produces different sets of transcripts
from the same set of reads. An example of assemblies produced by these methods and how the
assembled contigs differ is described in Section 4.3.

2.3. Ensemble approach

While a core set of transcripts are expected to be assembled correctly by many different assem-
blers, many transcripts will be missed by any individual tool [24] (also see Section 4). Through
combining the assemblies produced by multiple methods, ensemble assemblers such as
EvidentialGene [25] and Concatenation [26] attempt to address the limitations of individual
assemblers, ideally keeping contigs that are more likely to be correctly assembled and discarding
the rest. Both of EvidentialGene and Concatenation filter the contigs obtained from multiple
assemblers (usually de novo) by clustering the contigs based on their sequences, predicting the
coding region of the contig, and using features of the overall contig and the coding region to
determine the representative sequence for each cluster. EvidentialGene recommends using several
different tools across a wide range of kmer lengths. It uses the redundancy from multiple tools
generating nearly identical sequences, clusters them, scores the sequences in each cluster based of
the features of the sequence (e.g. lengths of the 50 and 30 untranslated regions), and returns one
representative sequence from each cluster (keeping also some alternative sequences). In contrast,
Concatenation recommends using only three assemblers, with one kmer length each. Concatena-
tion merges nucleotide sequences that are identical or perfect subsets, only filters contigs with no
predicted coding region.

These approaches greatly reduce the number of contigs by removing redundant and highly
similar sequences. However, there is no guarantee that the correct representative sequence is
kept for a given cluster or that each cluster represents one unique gene. Because they require
multiple assemblies to merge, they also come at a far greater computational cost. An example
of how these ensemble assembly strategies perform compared to individual de novo and
genome-guided methods is shown in Section 4.4.

2.4. Third generation sequencing

All of the methods described so far primarily use short but highly accurate reads from Illumina
sequencing for assembly, with or without a reference. With the rise of third-generation
sequencing technologies from Pacific Biosciences (PacBio SMRT) and Oxford Nanopore Tech-
nologies (ONT MinION), it is becoming possible to sequence entire mRNA molecules as one
very long read, though with a high error rate [27]. The ability to sequence the entire mRNA
molecule is especially beneficial for detecting alternative splice forms, which remain a chal-
lenge for short-read only assembly, and potentially for more accurate transcript quantification
if there is no bias in the mRNA molecules sequenced.

While many tools exist to perform genome assemblies using either these long reads alone or by
combining long reads and Illumina reads, at present no short read transcriptome assemblers
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take advantage of long-reads in transcriptome assembly. If these long reads can be sufficiently
error-corrected (e.g. [28, 29]), they can be used for a snapshot of the expressed transcriptome,
without requiring assembly or external references [30, 31]. Alternatively, after an independent
de novo assembly of short reads, the long reads can be used to confirm alternative splice forms
present in the assembly [32]. The long reads can be also mapped to a reference genome similar
to the split-read mapping methods used for genome-guided short-read assemblers discussed
above [27, 33–35]. With their accuracy increasing, in the future, long reads can be used more to
improve transcriptome assembly quality.

3. Performance metrics used for transcriptome assembly

In this section, we will discuss commonly used metrics to assess the quality of transcriptome
assemblies.

3.1. Metrics based on contig count and lengths

The most straightforward assembly metrics are those based on the number and lengths of the
sequences produced [36]. The number of sequences can be presented either or both of:

• the number of contigs

• the number of scaffolds

where for contigs no further joining of the sequences is performed after assembly, and for
scaffold contigs that have some support for being from the same original sequence are com-
bined together with a certain number of gaps between them.

Several different statistics are available for presenting the lengths of the sequences (either
contigs or scaffolds). The most commonly reported metrics are:

• minimum length (bp): the length of the shortest sequence produced

• maximum length (bp): the length of the longest sequence produced

• mean length (bp): the average length of the sequences produced

• median length (bp): the length where half of the sequences are shorter, and half of the
sequences are longer

• N50 (bp): a weighted median where the sum of the lengths of all sequences longer than
the N50 is at least half of the total length of the assembly

• L50: the smallest number of sequences whose combined length is longer than the N50

Additional metrics similar to N50 (e.g. N90) based on different thresholds are also used.

For genome assemblies where the target number of sequences is known (one circular genome
plus any smaller plasmids for prokaryotic organisms and the number of chromosomes for
eukaryotic organisms), these metrics provide an estimate for the thoroughness of the assembly
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Concatenation recommends using only three assemblers, with one kmer length each. Concatena-
tion merges nucleotide sequences that are identical or perfect subsets, only filters contigs with no
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These approaches greatly reduce the number of contigs by removing redundant and highly
similar sequences. However, there is no guarantee that the correct representative sequence is
kept for a given cluster or that each cluster represents one unique gene. Because they require
multiple assemblies to merge, they also come at a far greater computational cost. An example
of how these ensemble assembly strategies perform compared to individual de novo and
genome-guided methods is shown in Section 4.4.

2.4. Third generation sequencing

All of the methods described so far primarily use short but highly accurate reads from Illumina
sequencing for assembly, with or without a reference. With the rise of third-generation
sequencing technologies from Pacific Biosciences (PacBio SMRT) and Oxford Nanopore Tech-
nologies (ONT MinION), it is becoming possible to sequence entire mRNA molecules as one
very long read, though with a high error rate [27]. The ability to sequence the entire mRNA
molecule is especially beneficial for detecting alternative splice forms, which remain a chal-
lenge for short-read only assembly, and potentially for more accurate transcript quantification
if there is no bias in the mRNA molecules sequenced.

While many tools exist to perform genome assemblies using either these long reads alone or by
combining long reads and Illumina reads, at present no short read transcriptome assemblers
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take advantage of long-reads in transcriptome assembly. If these long reads can be sufficiently
error-corrected (e.g. [28, 29]), they can be used for a snapshot of the expressed transcriptome,
without requiring assembly or external references [30, 31]. Alternatively, after an independent
de novo assembly of short reads, the long reads can be used to confirm alternative splice forms
present in the assembly [32]. The long reads can be also mapped to a reference genome similar
to the split-read mapping methods used for genome-guided short-read assemblers discussed
above [27, 33–35]. With their accuracy increasing, in the future, long reads can be used more to
improve transcriptome assembly quality.

3. Performance metrics used for transcriptome assembly

In this section, we will discuss commonly used metrics to assess the quality of transcriptome
assemblies.

3.1. Metrics based on contig count and lengths

The most straightforward assembly metrics are those based on the number and lengths of the
sequences produced [36]. The number of sequences can be presented either or both of:

• the number of contigs

• the number of scaffolds

where for contigs no further joining of the sequences is performed after assembly, and for
scaffold contigs that have some support for being from the same original sequence are com-
bined together with a certain number of gaps between them.

Several different statistics are available for presenting the lengths of the sequences (either
contigs or scaffolds). The most commonly reported metrics are:

• minimum length (bp): the length of the shortest sequence produced

• maximum length (bp): the length of the longest sequence produced

• mean length (bp): the average length of the sequences produced

• median length (bp): the length where half of the sequences are shorter, and half of the
sequences are longer

• N50 (bp): a weighted median where the sum of the lengths of all sequences longer than
the N50 is at least half of the total length of the assembly

• L50: the smallest number of sequences whose combined length is longer than the N50

Additional metrics similar to N50 (e.g. N90) based on different thresholds are also used.

For genome assemblies where the target number of sequences is known (one circular genome
plus any smaller plasmids for prokaryotic organisms and the number of chromosomes for
eukaryotic organisms), these metrics provide an estimate for the thoroughness of the assembly
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[36]. For instance, in prokaryotic assemblies, the vast majority of the sequence is expected to be
in one long sequence, and having many shorter sequences indicates fragmentation of the
assembly [15]. In this context, longer sequences (e.g. larger N50) tend to indicate higher quality
assemblies. For transcriptome assemblies, however, the length of the assembled contigs varies
depending on the lengths of the transcripts being assembled. For the human transcriptome, for
example, while the longest transcript (for the gene coding the Titin protein) is over 100 kb, the
shortest is only 186 bp, with a median length of 2787 bp [37]. Emphasizing longer contigs also
rewards assemblers that over-assemble sequences, either by including additional sequence
incorrectly within a gene, or by joining multiple genes together to form chimeric contigs.
Therefore, for transcriptome assembly, metrics based on contig lengths do not necessarily
reflect its quality.

3.2. Metrics based on coded protein similarity

Rather than focusing on the number or length of the sequences produced by the assembly,
performing similarity searches with the assembled sequences can provide an estimate of the
quality of the contigs or scaffolds [24, 38]. Typically, the process consists of either similarity
searches against well annotated databases (such as the protein datasets of related genomes or
targeted orthologs, the BLAST non-redundant protein database [39] or the UniProt/Swiss-Prot
database [40]), conserved domain search within the contig sequence that determines the
potential function of the gene (such as PFAM or Panther [41, 42]), or a search against a lineage
specific conserved single-copy protein database (such as BUSCO [43]). These similarity
searches are usually performed on the predicted protein sequences for the contigs (e.g. using
GeneMarkS [44]), but can also be performed directly from the assembled nucleotide sequences
using BLASTX where translated nucleotide sequences are used to search against a protein
database [38]. If the organism being sequenced is closely related to a model organism with a
well-defined transcriptome, nearly all of the contigs that are not erroneously assembled and
code proteins should have identifiable potential homologs in the database. If a large percent-
age of the contigs do not have similar proteins identified in the database, there is a high
probability that the sequences are incorrectly assembled, regardless of the length of the
sequences. By performing similarity searches, over-assemblies or chimera contigs (those cov-
ering more than one gene) can be also detected as large gaps in the alignment between the
query and the hits. As protein sequence annotations are necessary for most downstream
analyses, they also provide a convenient metric without the need for additional, otherwise
unnecessary analyses.

Despite these advantages, there are some limitations to using protein-similarity based metrics
for assembler performance. First, the more divergent the organism being sequenced is from the
sequences in the database searched and the more species-specific genes in the transcriptome,
the lower the percentage of contigs with hits will be. This can result in some organisms
appearing to have a lower quality assembly solely due to their divergence from those well
represented in the databases. By extension, assemblies that recover more transcripts whose
coded proteins have few similar sequences in the database will appear worse than assemblies
that only recover conserved genes. This limitation can be somewhat mitigated by comparing
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only genes that are universally single-copy across different species, which are more likely to be
conserved and similar enough to be identified. This is the strategy used in BUSCO [43].
However, this comparison at best uses only a subset of the assembled contigs. Second, and
more problematic, this metric rewards assemblies that artificially duplicate conserved genes
with only small differences in the nucleotide sequence. In the extreme, this can result in several
times as many contigs in the assembly than were present in the actual transcriptome, but with
nearly all of the contigs coding conserved protein sequences. This is particularly an issue when
the analysis depends on identifying the gene copy numbers in the assembly. It also has a large
impact on the accuracy of contig quantification and differential expression analyses [45].

3.3. Assembly metrics based on benchmark transcriptomes

The only way to overcome the limitations of the metrics described in the previous sections is to
compare the assembly output against a benchmark transcriptome where correct sequences of
all transcripts are known. When an RNAseq data generated from a well-established model
organism is used for assembly, many of correctly assembled contigs can be identified. How-
ever, variability in the transcriptome among e.g. cell types limits the amount of information
that can be gained for incorrectly assembled contigs. It is also not possible to determine
whether sequences from the reference that are missing from the assembled transcriptome are
due to assembly errors, or whether they were not expressed in the library sequenced.
Transcriptome sequences may also vary between the individual under study and the reference.
Such variations can mask assembly errors that affect the contig sequences. Although this
limitation can be mitigated by sequencing an individual that is genetically identical to the
reference, it severely limits the types of organisms that can be used for the benchmark.

To comprehensively assess all of the assembly errors, we need to obtain RNAseq data from a
transcriptome where all transcript sequences and expression patterns are known. Ideally, such
a benchmark transcriptome would be synthetically produced and sequenced using standard
protocols. However, currently no such synthetic mRNA library exists. An alternative approach
is to simulate the sequencing of a given benchmark transcriptome. There are several tools that
can generate simulated reads modeling short Illumina reads [46, 47] and/or long third-
generation sequencing reads such as PacBio SMRT and ONT MinION [48, 49]. These tools
typically either focus on identifying the statistical distribution of reads across the sequences
and errors within the reads, as is the case for RSEM [46], PBSIM [48], and Nanosim [49], or
attempt to reconstruct each step of the library preparation and sequencing pipeline, mimicking
the errors and biases introduced at each step, as is the case for Flux Simulator [47].

Using simulated RNAseq data with a known transcriptome as a benchmark gives the most
detailed and close to true performance metric for assemblies. Specifically, this strategy allows
the quantification of each of the following categories:

• correctly assembled sequences (true positives or TPs)

• sequences that are assembled with errors (false positives or FPs)

• sequences in the reference that are missing from the assembly (false negatives or FNs)
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[36]. For instance, in prokaryotic assemblies, the vast majority of the sequence is expected to be
in one long sequence, and having many shorter sequences indicates fragmentation of the
assembly [15]. In this context, longer sequences (e.g. larger N50) tend to indicate higher quality
assemblies. For transcriptome assemblies, however, the length of the assembled contigs varies
depending on the lengths of the transcripts being assembled. For the human transcriptome, for
example, while the longest transcript (for the gene coding the Titin protein) is over 100 kb, the
shortest is only 186 bp, with a median length of 2787 bp [37]. Emphasizing longer contigs also
rewards assemblers that over-assemble sequences, either by including additional sequence
incorrectly within a gene, or by joining multiple genes together to form chimeric contigs.
Therefore, for transcriptome assembly, metrics based on contig lengths do not necessarily
reflect its quality.

3.2. Metrics based on coded protein similarity

Rather than focusing on the number or length of the sequences produced by the assembly,
performing similarity searches with the assembled sequences can provide an estimate of the
quality of the contigs or scaffolds [24, 38]. Typically, the process consists of either similarity
searches against well annotated databases (such as the protein datasets of related genomes or
targeted orthologs, the BLAST non-redundant protein database [39] or the UniProt/Swiss-Prot
database [40]), conserved domain search within the contig sequence that determines the
potential function of the gene (such as PFAM or Panther [41, 42]), or a search against a lineage
specific conserved single-copy protein database (such as BUSCO [43]). These similarity
searches are usually performed on the predicted protein sequences for the contigs (e.g. using
GeneMarkS [44]), but can also be performed directly from the assembled nucleotide sequences
using BLASTX where translated nucleotide sequences are used to search against a protein
database [38]. If the organism being sequenced is closely related to a model organism with a
well-defined transcriptome, nearly all of the contigs that are not erroneously assembled and
code proteins should have identifiable potential homologs in the database. If a large percent-
age of the contigs do not have similar proteins identified in the database, there is a high
probability that the sequences are incorrectly assembled, regardless of the length of the
sequences. By performing similarity searches, over-assemblies or chimera contigs (those cov-
ering more than one gene) can be also detected as large gaps in the alignment between the
query and the hits. As protein sequence annotations are necessary for most downstream
analyses, they also provide a convenient metric without the need for additional, otherwise
unnecessary analyses.

Despite these advantages, there are some limitations to using protein-similarity based metrics
for assembler performance. First, the more divergent the organism being sequenced is from the
sequences in the database searched and the more species-specific genes in the transcriptome,
the lower the percentage of contigs with hits will be. This can result in some organisms
appearing to have a lower quality assembly solely due to their divergence from those well
represented in the databases. By extension, assemblies that recover more transcripts whose
coded proteins have few similar sequences in the database will appear worse than assemblies
that only recover conserved genes. This limitation can be somewhat mitigated by comparing
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only genes that are universally single-copy across different species, which are more likely to be
conserved and similar enough to be identified. This is the strategy used in BUSCO [43].
However, this comparison at best uses only a subset of the assembled contigs. Second, and
more problematic, this metric rewards assemblies that artificially duplicate conserved genes
with only small differences in the nucleotide sequence. In the extreme, this can result in several
times as many contigs in the assembly than were present in the actual transcriptome, but with
nearly all of the contigs coding conserved protein sequences. This is particularly an issue when
the analysis depends on identifying the gene copy numbers in the assembly. It also has a large
impact on the accuracy of contig quantification and differential expression analyses [45].

3.3. Assembly metrics based on benchmark transcriptomes

The only way to overcome the limitations of the metrics described in the previous sections is to
compare the assembly output against a benchmark transcriptome where correct sequences of
all transcripts are known. When an RNAseq data generated from a well-established model
organism is used for assembly, many of correctly assembled contigs can be identified. How-
ever, variability in the transcriptome among e.g. cell types limits the amount of information
that can be gained for incorrectly assembled contigs. It is also not possible to determine
whether sequences from the reference that are missing from the assembled transcriptome are
due to assembly errors, or whether they were not expressed in the library sequenced.
Transcriptome sequences may also vary between the individual under study and the reference.
Such variations can mask assembly errors that affect the contig sequences. Although this
limitation can be mitigated by sequencing an individual that is genetically identical to the
reference, it severely limits the types of organisms that can be used for the benchmark.

To comprehensively assess all of the assembly errors, we need to obtain RNAseq data from a
transcriptome where all transcript sequences and expression patterns are known. Ideally, such
a benchmark transcriptome would be synthetically produced and sequenced using standard
protocols. However, currently no such synthetic mRNA library exists. An alternative approach
is to simulate the sequencing of a given benchmark transcriptome. There are several tools that
can generate simulated reads modeling short Illumina reads [46, 47] and/or long third-
generation sequencing reads such as PacBio SMRT and ONT MinION [48, 49]. These tools
typically either focus on identifying the statistical distribution of reads across the sequences
and errors within the reads, as is the case for RSEM [46], PBSIM [48], and Nanosim [49], or
attempt to reconstruct each step of the library preparation and sequencing pipeline, mimicking
the errors and biases introduced at each step, as is the case for Flux Simulator [47].

Using simulated RNAseq data with a known transcriptome as a benchmark gives the most
detailed and close to true performance metric for assemblies. Specifically, this strategy allows
the quantification of each of the following categories:

• correctly assembled sequences (true positives or TPs)

• sequences that are assembled with errors (false positives or FPs)

• sequences in the reference that are missing from the assembly (false negatives or FNs)
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“Correctness” and “incorrectness” (or error) can be defined using varying degrees of sequence
similarities. Using the strictest threshold, a contig sequence is assembled “correctly” only if the
entire nucleotide or coded protein sequence is identical to a reference transcript. All other
contigs found in the assembly, including those whose sequences have no similarity in the
reference transcriptome (missing contigs), are considered to be assembled “incorrectly” (FPs)
regardless of the similarity against the reference sequences.

Note that true negatives (TNs) can be counted only if the assembly experiments are done
including reads that are derived from transcripts that are not part of the reference transcriptome
(negative transcripts). Using these categories, following assembly metrics can be calculated:

• Accuracy = TPþTN
TPþFPþTNþFN

• Sensitivity (or recall) = TP
TPþFN

• Specificity = TN
TNþFP

• Precision = TP
TPþFP

• F-measure (or F1 score) =
2 TPð Þ

2 TPð ÞþFPþFN

• False discovery rate (FDR) = FP
FPþTP

Often in an RNAseq simulation, negative transcripts are not included; hence TN cannot be
counted. In such cases, we can calculate an alternative metric as the accuracy:

• Accuracy* = TP
TPþFPþFN

Despite the added benefits of simulation for measuring the performance of assemblers, these
metrics assume that the simulation accurately reflects the nature of real RNAseq data. Differ-
ences in the distribution of reads or errors between the simulations and real data can impact
the relative performance of the assemblers. Assemblers that perform well on simulated data
may perform poorly on real data if those assumptions are not met. Consequently, great care
must be taken to ensure that the simulated data captures the features of real data as accurately
as possible to best characterize the performance of different assembly strategies.

4. Performance analysis of transcriptome assemblers

In this section, as an example, we compare the performance of transcriptome assemblers using
a simulated benchmark transcriptome dataset.

4.1. Benchmark transcriptome and simulated RNAseq

RNAseq datasets were generated by Flux Simulator [47] using the hg38 human genome
(available at https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg38) as the reference. The older
hg19 human genome (available at http://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19) was

Bioinformatics in the Era of Post Genomics and Big Data22

also used as an alternate reference genome to assess the impact of using a different reference
with genome-guided assemblers. The gene expression profile was generated by Flux Simulator
using the standard parameters from the hg38 reference genome and transcriptome model.
Approximately 250 million pairs of reads were computationally generated with the given
expression model with no PolyA tail. The simulated library construction was fragmented
uniformly at random, with an average fragment size of 500 (�180) nucleotides (nt). Because
reads overlapping within read pairs can cause problems for some assemblers, fragments
shorter than 150 nt were removed. The simulated sequencing was performed using paired-
end reads of length of 76 nt using the default error model based on the read quality of
Illumina-HiSeq sequencers. Note that only reference transcripts with full coverage of RNAseq
data were included in the benchmarking, as transcripts without full coverage cannot be
correctly assembled as a single contig. This filtering removed 2700 transcripts expressed in
the benchmark transcriptome, leaving 14,040 unique sequences derived from 8557 genes (5309
with no alternative splicing; on average 1.64, ranging up to 13, isoforms per gene).

The read pairs generated by Flux Simulator were quality filtered using Erne-filter version 2.0
[50]. The reads were filtered using ultra-sensitive settings with a minimum average quality of
q20 (representing a 99% probability that the nucleotide is correctly reported). The filtering was
performed in paired-end mode to ensure that both reads of the pair were either kept or
discarded concurrently to keep the pairs together. The remaining reads were normalized using
Khmer [51] with a kmer size of 32 and an expected coverage of 50�. The normalization was
also performed in paired-end mode to maintain pairs.

4.2. De novo assemblies

We compared the performance among four de novo transcriptome assemblers: idba-Tran (ver-
sion 1.1.1) [9], SOAPdenovo-Trans (version 1.03) [8], rnaSPAdes (version 3.11.0) [12], and
Trinity (version 2.5.1) [7], using the simulated human RNAseq dataset as described in the
previous section. The resulted assemblies were compared against the benchmark
transcriptome. As shown in Table 1, all of the tools underestimated the number of transcripts
present, generating fewer contigs than the number of transcripts expected (14,040). The best
performing tool among the four compared was Trinity with the most correct contigs (5782) and
the highest correct/incorrect ratio (C/I = 0.84). However, even with Trinity, still only 41% (5782/
14,040) of transcripts in the benchmark were correctly assembled; the remaining almost 60% of
contigs either contained errors in the sequence or were missed entirely. rnaSPAdes assembled
the largest number of transcripts (874 more unique transcripts compared to Trinity). The
number of unique transcripts generated, 13,513, is also the closest to the expected total number
of transcripts (96% of 14,040). However, fewer of those sequences (36%) were correctly assem-
bled, lowering the overall performance across all statistics than Trinity.

Performance statistics for each assembler is given in Table 2. Precision is a measure of how likely
an assembled contig is to be correct, and recall is a measure of how likely the assembler is to
correctly assemble a contig. In these terms, for assemblers with high precision, the contigs
produced are more likely to be correct, but the assembly may miss a large number of sequences
present in the sample. Conversely, assemblers with high recall values correctly assemble more of
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“Correctness” and “incorrectness” (or error) can be defined using varying degrees of sequence
similarities. Using the strictest threshold, a contig sequence is assembled “correctly” only if the
entire nucleotide or coded protein sequence is identical to a reference transcript. All other
contigs found in the assembly, including those whose sequences have no similarity in the
reference transcriptome (missing contigs), are considered to be assembled “incorrectly” (FPs)
regardless of the similarity against the reference sequences.

Note that true negatives (TNs) can be counted only if the assembly experiments are done
including reads that are derived from transcripts that are not part of the reference transcriptome
(negative transcripts). Using these categories, following assembly metrics can be calculated:
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• Sensitivity (or recall) = TP
TPþFN

• Specificity = TN
TNþFP

• Precision = TP
TPþFP

• F-measure (or F1 score) =
2 TPð Þ

2 TPð ÞþFPþFN

• False discovery rate (FDR) = FP
FPþTP

Often in an RNAseq simulation, negative transcripts are not included; hence TN cannot be
counted. In such cases, we can calculate an alternative metric as the accuracy:

• Accuracy* = TP
TPþFPþFN

Despite the added benefits of simulation for measuring the performance of assemblers, these
metrics assume that the simulation accurately reflects the nature of real RNAseq data. Differ-
ences in the distribution of reads or errors between the simulations and real data can impact
the relative performance of the assemblers. Assemblers that perform well on simulated data
may perform poorly on real data if those assumptions are not met. Consequently, great care
must be taken to ensure that the simulated data captures the features of real data as accurately
as possible to best characterize the performance of different assembly strategies.

4. Performance analysis of transcriptome assemblers

In this section, as an example, we compare the performance of transcriptome assemblers using
a simulated benchmark transcriptome dataset.

4.1. Benchmark transcriptome and simulated RNAseq

RNAseq datasets were generated by Flux Simulator [47] using the hg38 human genome
(available at https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg38) as the reference. The older
hg19 human genome (available at http://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19) was
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also used as an alternate reference genome to assess the impact of using a different reference
with genome-guided assemblers. The gene expression profile was generated by Flux Simulator
using the standard parameters from the hg38 reference genome and transcriptome model.
Approximately 250 million pairs of reads were computationally generated with the given
expression model with no PolyA tail. The simulated library construction was fragmented
uniformly at random, with an average fragment size of 500 (�180) nucleotides (nt). Because
reads overlapping within read pairs can cause problems for some assemblers, fragments
shorter than 150 nt were removed. The simulated sequencing was performed using paired-
end reads of length of 76 nt using the default error model based on the read quality of
Illumina-HiSeq sequencers. Note that only reference transcripts with full coverage of RNAseq
data were included in the benchmarking, as transcripts without full coverage cannot be
correctly assembled as a single contig. This filtering removed 2700 transcripts expressed in
the benchmark transcriptome, leaving 14,040 unique sequences derived from 8557 genes (5309
with no alternative splicing; on average 1.64, ranging up to 13, isoforms per gene).

The read pairs generated by Flux Simulator were quality filtered using Erne-filter version 2.0
[50]. The reads were filtered using ultra-sensitive settings with a minimum average quality of
q20 (representing a 99% probability that the nucleotide is correctly reported). The filtering was
performed in paired-end mode to ensure that both reads of the pair were either kept or
discarded concurrently to keep the pairs together. The remaining reads were normalized using
Khmer [51] with a kmer size of 32 and an expected coverage of 50�. The normalization was
also performed in paired-end mode to maintain pairs.

4.2. De novo assemblies

We compared the performance among four de novo transcriptome assemblers: idba-Tran (ver-
sion 1.1.1) [9], SOAPdenovo-Trans (version 1.03) [8], rnaSPAdes (version 3.11.0) [12], and
Trinity (version 2.5.1) [7], using the simulated human RNAseq dataset as described in the
previous section. The resulted assemblies were compared against the benchmark
transcriptome. As shown in Table 1, all of the tools underestimated the number of transcripts
present, generating fewer contigs than the number of transcripts expected (14,040). The best
performing tool among the four compared was Trinity with the most correct contigs (5782) and
the highest correct/incorrect ratio (C/I = 0.84). However, even with Trinity, still only 41% (5782/
14,040) of transcripts in the benchmark were correctly assembled; the remaining almost 60% of
contigs either contained errors in the sequence or were missed entirely. rnaSPAdes assembled
the largest number of transcripts (874 more unique transcripts compared to Trinity). The
number of unique transcripts generated, 13,513, is also the closest to the expected total number
of transcripts (96% of 14,040). However, fewer of those sequences (36%) were correctly assem-
bled, lowering the overall performance across all statistics than Trinity.

Performance statistics for each assembler is given in Table 2. Precision is a measure of how likely
an assembled contig is to be correct, and recall is a measure of how likely the assembler is to
correctly assemble a contig. In these terms, for assemblers with high precision, the contigs
produced are more likely to be correct, but the assembly may miss a large number of sequences
present in the sample. Conversely, assemblers with high recall values correctly assemble more of
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the sequences present in the sample, but may do so at the cost of accumulating a large number of
incorrectly assembled contigs. In these statistics, both the modified accuracy score (accuracy*; see
Section 3.3) and the F1 score are a measure of the number of correctly assembled contigs relative
to the number of missing and incorrectly assembled contigs. FDR is the proportion of assembled
reads that are incorrect. Based on these statistics, Trinity is the best performing de novo assembler
with the highest precision, recall, accuracy* and F1 score, and the lowest FDR, followed by
rnaSPAdes then SOAPdenovo-Trans. Despite idba-Tran running multiple kmers and merging
the results, it performed worst across every metric.

In Table 1, the results from pooling (taking the union of) the outputs of multiple runs of each
assembler across a range of kmer lengths are also shown. With these pooled assemblies, the
proportion of correctly assembled transcripts in the benchmark for Trinity increased from 41 to
46%, and for rnaSPAdes from 36 to 47%. However, the pooling process also accumulated
several times more unique incorrect sequences than additional correct sequences recovered.

Methods Totala Uniquea Correcta (%)b Incorrecta C/Ic

[Default]

idba-Tran 11,943 11,941 3504 (24.96) 8437 0.4153

SOAPdenovo-Trans 12,902 11,830 3754 (26.74) 8076 0.4648

rnaSPAdes 15,670 13,513 5014 (35.71) 8499 0.5900

Trinity 14,044 12,639 5782 (41.18) 6857 0.8432

[Pooled]d

idba-Tran 170,358 41,849 6391 (45.52) 35,458 0.1802

SOAPdenovo-Trans 297,192 50,504 6059 (43.16) 44,445 0.1363

rnaSPAdes 765,525 113,975 6665 (47.47) 107,310 0.0621

Trinity 89,126 25,045 6452 (45.95) 18,593 0.3470

aNumber of contigs assembled.
bProportion (%) of transcripts in the benchmark that were correctly assembled.
c(Number of correctly assembled contigs)/(number of incorrectly assembled contigs).
dPooled results from using multiple kmers as follows: 15, 19, 23, 27, and 31 for Trinity; 15 kmer values ranging from 15 to
75 in increments of 4 for SOAPdenovo-Trans and rnaSPAdes; 20, 30, 40, 50, and 60 for idba-Tran.

Table 1. Performance of individual de novo assemblers on simulated RNAseq library using default parameters or pooled
across multiple kmer lengths.

Methods Precision Recall Accuracy* F1 FDR

idba-Tran 0.2934 0.2496 0.1559 0.2697 0.7066

SOAPdenovo-Trans 0.3173 0.2674 0.1697 0.2902 0.6827

rnaSPAdes 0.3711 0.3571 0.2225 0.3640 0.6289

Trinity 0.4575 0.4118 0.2767 0.4334 0.5425

Table 2. Performance statistics of individual de novo assemblers using default parameters on simulated RNAseq library.
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For Trinity, the C/I decreased from 0.8432 to 0.3470, and for rnaSPAdes this ratio decreased
from 0.5900 to 0.0621.

Although the four de novo assembly methods use the same core approach, each method assem-
bled a different set of sequences correctly (Figure 1A). Only a set of 5331 contigs were correctly
assembled by all of the four de novo assemblers with at least one kmer length. Additional 813,
567, and 670 contigs were correctly assembled by at least three, at least two, and only one of the
assemblers, respectively. In contrast, the vast majority of the incorrectly assembled contigs were
produced by only one assembler (Figure 1B). For these contigs, 3764 were produced by all four
assemblers, while an additional 2692, 7977 and 166,720 were produced by at least three, at least
two or only one of the assemblers, respectively.

4.3. Genome-guided assemblies

We next compared the transcriptome assembly performance among three genome-guided
assemblers: Bayesembler (version 1.2.0) [21], Cufflinks (version 2.2.1) [22], and StringTie (ver-
sion 1.0.4) [23]. To demonstrate the impact of using different reference genomes on genome-
guided transcriptome assemblies, we used both of the hg38 as well as hg19 genomes as the
references. Assembly assessment was done against the hg38 benchmark transcriptome.

Table 3 shows the performance of each of these tools in the two scenarios (RNAseq data and
the reference were derived from the same or different genomes). As observed with de novo
methods, all of these genome-guided methods underestimated the number of transcripts
present, even more severely than de novo methods. In terms of the number of contigs correctly
assembled, StringTie performed slightly better than other two methods. All three methods had
comparable percent correct (36–41% with the same reference) and C/I (0.87–0.88 with the same

Figure 1. Comparisons of the contigs correctly (A) and incorrectly (B) assembled among four de novo assemblers. For each
assembler, results from multiple kmers were pooled. Correctly assembled sequences were identified when the protein
sequence of the contig matched the protein sequence in the benchmark transcriptome. Incorrectly assembled sequences
were identified when the protein sequence of the contig did not exactly match any protein sequence in the benchmark
transcriptome.
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rnaSPAdes then SOAPdenovo-Trans. Despite idba-Tran running multiple kmers and merging
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assembler across a range of kmer lengths are also shown. With these pooled assemblies, the
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46%, and for rnaSPAdes from 36 to 47%. However, the pooling process also accumulated
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c(Number of correctly assembled contigs)/(number of incorrectly assembled contigs).
dPooled results from using multiple kmers as follows: 15, 19, 23, 27, and 31 for Trinity; 15 kmer values ranging from 15 to
75 in increments of 4 for SOAPdenovo-Trans and rnaSPAdes; 20, 30, 40, 50, and 60 for idba-Tran.

Table 1. Performance of individual de novo assemblers on simulated RNAseq library using default parameters or pooled
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from 0.5900 to 0.0621.

Although the four de novo assembly methods use the same core approach, each method assem-
bled a different set of sequences correctly (Figure 1A). Only a set of 5331 contigs were correctly
assembled by all of the four de novo assemblers with at least one kmer length. Additional 813,
567, and 670 contigs were correctly assembled by at least three, at least two, and only one of the
assemblers, respectively. In contrast, the vast majority of the incorrectly assembled contigs were
produced by only one assembler (Figure 1B). For these contigs, 3764 were produced by all four
assemblers, while an additional 2692, 7977 and 166,720 were produced by at least three, at least
two or only one of the assemblers, respectively.

4.3. Genome-guided assemblies

We next compared the transcriptome assembly performance among three genome-guided
assemblers: Bayesembler (version 1.2.0) [21], Cufflinks (version 2.2.1) [22], and StringTie (ver-
sion 1.0.4) [23]. To demonstrate the impact of using different reference genomes on genome-
guided transcriptome assemblies, we used both of the hg38 as well as hg19 genomes as the
references. Assembly assessment was done against the hg38 benchmark transcriptome.

Table 3 shows the performance of each of these tools in the two scenarios (RNAseq data and
the reference were derived from the same or different genomes). As observed with de novo
methods, all of these genome-guided methods underestimated the number of transcripts
present, even more severely than de novo methods. In terms of the number of contigs correctly
assembled, StringTie performed slightly better than other two methods. All three methods had
comparable percent correct (36–41% with the same reference) and C/I (0.87–0.88 with the same
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reference). While none of the genome-guided assemblers produced as many correctly assem-
bled contigs as the best performing de novo assembler (Trinity), proportions of correctly assem-
bled contigs were higher with genome-guided methods (C/I = 0.87–0.88 with the same
reference) than with the four de novo methods (C/I = 0.41–0.84). When the performance metrics
are compared between the best performing de novo assembler (Trinity) and genome-guided
assembler (StringTie) (Table 4), while both methods showed similar accuracy, StringTie (when
using the same reference) showed slightly higher precision, accuracy* and F1 and lower FDR
compared to Trinity, but a slightly lower recall. It reflects fewer FPs and FNs produced by
StringTie.

As with the de novo assemblers, each of these tools correctly assembled a different set of tran-
scripts (Figure 2A and C). When the assemblies were performed using the same reference as the
simulation, all of the genome-guided tools correctly assembled a core set of 4013 transcripts
(Figure 2A). There were nearly a quarter as many (936) that were unique to only one genome-
guided tool. When a different reference was used, the number of sequences correctly assembled
by all of the tools dropped to 2546 (Figure 2C). Similar to the de novo assemblers, most of the

Methods Total Unique Correct (%) Incorrect C/I

[Same reference]

Bayesembler 12,989 11,482 5327 (37.94) 6155 0.8655

Cufflinks 11,257 10,733 4992 (35.56) 5741 0.8695

StringTie 13,218 12,147 5696 (40.57) 6451 0.8830

[Different reference]

Bayesembler 8536 7479 3345 (23.82) 4134 0.8091

Cufflinks 7234 6906 3078 (21.92) 3828 0.8041

StringTie 8608 7867 3466 (24.69) 4401 0.7875

Table 3. Performance of individual genome-guided assemblers using default parameters on simulated RNAseq library
with both the same and different references genome as the benchmark. See Table 1 for the description of numbers shown.

Methods Precision Recall Accuracy* F1 FDR

[Same reference]

Bayesembler 0.4639 0.3794 0.2638 0.4174 0.5361

Cufflinks 0.4651 0.3556 0.2524 0.4030 0.5349

StringTie 0.4689 0.4057 0.2780 0.4350 0.5311

[Different reference]

Bayesembler 0.4473 0.2382 0.1841 0.3109 0.5527

Cufflinks 0.4457 0.2192 0.1723 0.2939 0.5543

StringTie 0.4406 0.2469 0.1880 0.3164 0.5594

Table 4. Performance statistics of individual genome-guided assemblers using default parameters on simulated RNAseq
library with both the same and different references genome as the benchmark.
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incorrectly assembled contigs produced by each of the genome-guided assemblers were pro-
duced by only one assembler regardless of the reference genome used (Figure 2B and D). For
assemblies using the same reference genome, 2013 incorrectly assembled contigs were produced
by all of the tools, while an additional 2382 and 7546 were produced by any two or only one tool,
respectively (Figure 2B). For assemblies using a different reference genome, 1420 incorrectly
assembled contigs were produced by all of the tools, while an additional 1667 and 4772 were
produced by any two or only one tool, respectively (Figure 2D).

Figure 2. Comparisons of the contigs correctly (A and C) and incorrectly (B and D) assembled among three genome-guided
assemblers. Correctly assembled sequences were identified when the protein sequence of the contig matches the protein
sequence in the same (A) or different (C) reference genome. Incorrectly assembled sequences were identified when the
protein sequence of the contig does not exactly match any protein sequence in the same (B) or different (D) reference genome.
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reference). While none of the genome-guided assemblers produced as many correctly assem-
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reference) than with the four de novo methods (C/I = 0.41–0.84). When the performance metrics
are compared between the best performing de novo assembler (Trinity) and genome-guided
assembler (StringTie) (Table 4), while both methods showed similar accuracy, StringTie (when
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compared to Trinity, but a slightly lower recall. It reflects fewer FPs and FNs produced by
StringTie.

As with the de novo assemblers, each of these tools correctly assembled a different set of tran-
scripts (Figure 2A and C). When the assemblies were performed using the same reference as the
simulation, all of the genome-guided tools correctly assembled a core set of 4013 transcripts
(Figure 2A). There were nearly a quarter as many (936) that were unique to only one genome-
guided tool. When a different reference was used, the number of sequences correctly assembled
by all of the tools dropped to 2546 (Figure 2C). Similar to the de novo assemblers, most of the
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Table 4. Performance statistics of individual genome-guided assemblers using default parameters on simulated RNAseq
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Bioinformatics in the Era of Post Genomics and Big Data26

incorrectly assembled contigs produced by each of the genome-guided assemblers were pro-
duced by only one assembler regardless of the reference genome used (Figure 2B and D). For
assemblies using the same reference genome, 2013 incorrectly assembled contigs were produced
by all of the tools, while an additional 2382 and 7546 were produced by any two or only one tool,
respectively (Figure 2B). For assemblies using a different reference genome, 1420 incorrectly
assembled contigs were produced by all of the tools, while an additional 1667 and 4772 were
produced by any two or only one tool, respectively (Figure 2D).

Figure 2. Comparisons of the contigs correctly (A and C) and incorrectly (B and D) assembled among three genome-guided
assemblers. Correctly assembled sequences were identified when the protein sequence of the contig matches the protein
sequence in the same (A) or different (C) reference genome. Incorrectly assembled sequences were identified when the
protein sequence of the contig does not exactly match any protein sequence in the same (B) or different (D) reference genome.

Next-Generation Transcriptome Assembly: Strategies and Performance Analysis
http://dx.doi.org/10.5772/intechopen.73497

27



4.4. Comparison of de novo and genome-guided assemblers

While the overall statistics are comparable between the best de novo assemblies and the genome-
guided assemblies using the same reference genome, these tools produced different sets of
contigs. The overlap of correctly assembled contigs between the assemblers from de novo with
pooled kmers lengths and the three genome-guided assemblers are shown in Figure 3A. All of
the de novo assemblers and at least one genome-guided assembler correctly assembled 4605
contigs. An additional 629 were assembled by at least three de novo and at least one genome-
guided assembler and 427 assembled by at least two de novo and at least one genome-guided
assembler. Conversely, 3861 contigs were correctly assembled by all of the three genome-guided
assemblers and at least one de novo assembler, with 1338 assembled by at least two genome-
guided assemblers and at least one de novo assembler (Figure 3B). Additionally, these tools
produced only 602 correctly assembled contigs that were not predicted by any de novo assembly,
while 1514 sequences were correctly assembled by at least one de novo assembly, but no genome-
guided assemblies.

As with the individual assemblies, fewer incorrectly assembled contigs were produced by all
of the tools, and most are assembler specific (Figure 3C and D). In particular, only 1387
incorrectly assembled contigs were produced by all of the de novo assemblers and at least one
genome-guided assembler (Figure 3C), and only 1593 contigs were produced all of the
genome-guided assemblers and at least one de novo assembler (Figure 3D). In contrast, 4823
incorrectly assemblers were produced by at least one genome-guided assembler but no de novo
assemblers, and 176,397 incorrectly assembled contigs were produced by at least one de novo
assembler but no genome-guided assemblers.

Overall, these results suggest that genome-guided assemblies provide relatively few correctly
assembled contigs relative to performing multiple de novo assemblies, even when using the
same reference genome. However, they produce far fewer incorrectly assembled contigs than
the pooled de novo assemblies. If the correctly assembled contigs produced by each of the de
novo assemblies can be retained while filtering out the incorrectly assembled contigs, de novo
assemblies can outperform all of the genome-guided assemblies. This result forms the motiva-
tion of ensemble assembly strategies, discussed in the next section.

4.5. Ensemble assemblies

We compared the two ensemble transcriptome assembly methods, EvidentialGene (version
2017.03.09) [25] and Concatenation (version 1) [26] using the simulated RNAseq data. The
strategies for these assemblies followed the recommendations by each method. For
EvidentialGene, the pooled results from all of the four de novo assemblies performed across
the full range of kmer lengths (described in Section 4.2) were used. For Concatenation, the
results of a single assembly each from idba-Tran (using kmer length of 50), rnaSPAdes (with
default kmer selection), and Trinity (with default kmer length) were used. These assemblers
were chosen to match the assemblies used in [26], substituting the commercial CLC Assembly
Cell (https://www.qiagenbioinformatics.com/products/clc-assembly-cell/) with freely available
rnaSPAdes.
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In addition to the two ensemble methods, we also included three “consensus” approaches
taking the consensus of the pooled de novo methods. These consensus assemblies involve
keeping all of the unique protein sequences produced by any two, three and four tools (named
Consensus 2, Consensus 3 and Consensus 4, respectively). Note that Consensus 4 is a subset of
Consensus 3, and Consensus 3 is a subset of Consensus 2.

The performance of these ensemble strategies is shown in Table 5. Both of EvidentialGene and
Concatenation resulted in an over-estimation in the number of transcripts present. Interestingly,
while Concatenation produced a larger total number of transcripts (19,767) than EvidentialGene
(19,177), ~2300 of those sequences were redundant, leading to fewer unique sequences (17,497 by

Figure 3. Comparisons of the results among de novo and genome-guided transcriptome assemblers. For each de novo
assembler, results from multiple kmers were pooled. Correctly (A) and incorrectly (C) assembled sequences for each de
novo assembler are compared with the combined results from genome-guided assemblers. Correctly (B) and incorrectly
(D) assembled sequences for each genome-guided assembler are compared with the combined results from de novo
assemblers.
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4.4. Comparison of de novo and genome-guided assemblers
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strategies for these assemblies followed the recommendations by each method. For
EvidentialGene, the pooled results from all of the four de novo assemblies performed across
the full range of kmer lengths (described in Section 4.2) were used. For Concatenation, the
results of a single assembly each from idba-Tran (using kmer length of 50), rnaSPAdes (with
default kmer selection), and Trinity (with default kmer length) were used. These assemblers
were chosen to match the assemblies used in [26], substituting the commercial CLC Assembly
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In addition to the two ensemble methods, we also included three “consensus” approaches
taking the consensus of the pooled de novo methods. These consensus assemblies involve
keeping all of the unique protein sequences produced by any two, three and four tools (named
Consensus 2, Consensus 3 and Consensus 4, respectively). Note that Consensus 4 is a subset of
Consensus 3, and Consensus 3 is a subset of Consensus 2.

The performance of these ensemble strategies is shown in Table 5. Both of EvidentialGene and
Concatenation resulted in an over-estimation in the number of transcripts present. Interestingly,
while Concatenation produced a larger total number of transcripts (19,767) than EvidentialGene
(19,177), ~2300 of those sequences were redundant, leading to fewer unique sequences (17,497 by

Figure 3. Comparisons of the results among de novo and genome-guided transcriptome assemblers. For each de novo
assembler, results from multiple kmers were pooled. Correctly (A) and incorrectly (C) assembled sequences for each de
novo assembler are compared with the combined results from genome-guided assemblers. Correctly (B) and incorrectly
(D) assembled sequences for each genome-guided assembler are compared with the combined results from de novo
assemblers.
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Concatenation). Additionally, Concatenation both kept more of the correctly assembled contigs
from the individual de novo assemblies, and removed more of the incorrectly assembled contigs
than EvidentialGene. These differences lead Concatenation to outperform EvidentialGene across
every statistic (Table 6). The performance of the consensus approach varied based on the number
of assemblers required.

Consensus 2 produced the most correctly assembled contigs of any method (6711), but at
the cost of more incorrectly assembled contigs than Concatenation (14,433). However, both
Consensus 3 and Consensus 4 kept the majority of the correctly assembled contigs while
reducing the number of incorrectly assembled contigs by roughly half or three quarters,
respectively. Consensus 4 had the highest precision (0.5861) and lowest FDR (0.4139) of any
method. However, the additional reduction in the number of correctly assembled contigs lead
to Consensus 3 having slightly higher accuracy* (0.2998) and F1 score (0.4613).

In Figure 4 all individual methods (both de novo and genome-guided) as well as ensemble
methods are compared. Concatenation performed more poorly than Trinity despite the Trinity
assembly forming part of the ensemble. In contrast, Consensus 3 kept more correctly assem-
bled contigs than any individual assembly, with fewer incorrectly assembled than any
approach except Consensus 4. This test highlights the weakness of ensemble assembly strate-
gies to retain the incorrect version of a transcript, even if the correct version of the transcript
exists in the individual assemblies. More robust methods, such as the consensus approaches
we presented here, are needed to reliably improve over individual assemblies.

Methods Total Unique Correct (%) Incorrect C/I

EvidentialGene 19,177 19,175 2267 (16.15) 16,908 0.1341

Concatenation 19,767 17,497 4697 (33.45) 12,800 0.3670

Consensus 2 21,444 21,444 6711 (47.80) 14,433 0.4650

Consensus 3 12,600 12,600 6144 (43.76) 6456 0.9517

Consensus 4 9095 9095 5331 (37.97) 3764 1.416

Table 5. Performance of individual genome-guided assemblers using default parameters on simulated RNAseq library
with both the same and different references genome as the benchmark transcriptome. See Table 1 for the description of
numbers shown.

Methods Precision Recall Accuracy* F1 FDR

EvidentialGene 0.1182 0.1615 0.0733 0.1365 0.8818

Concatenation 0.2684 0.3345 0.1750 0.2979 0.7316

Consensus 2 0.3174 0.4780 0.2357 0.3815 0.6826

Consensus 3 0.4876 0.4376 0.2998 0.4613 0.5124

Consensus 4 0.5861 0.3797 0.2994 0.4609 0.4139

Table 6. Performance statistics of ensemble assembly strategies using de novo assemblies on simulated RNAseq library.
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5. Conclusions

Transcriptome assembly can be approached from multiple different strategies. Historically,
these approaches have revolved around assembling short but highly accurate Illumina reads
with or without an existing genome assembly as a reference, referred to as genome-guided or
de novo assemblers, respectively. All of the widely used de novo assemblers decompose the
short reads into smaller kmers and use de Bruijn graphs built on these kmers to attempt to
reconstruct the original transcripts. Due to the limitations of the de Bruijn graphs, this
approach presents a trade-off between the uniqueness of the longer kmers and increased
coverage of the shorter kmers. As a result, different kmer lengths can produce drastically
different graphs, leading to large differences in the final assemblies.

Genome-guided assemblers avoid the limitations of the de Bruijn graphs by mapping the reads
to the reference genome. This mapping, however, introduces its own limitations and trade-
offs. Reads that are ambiguous between splice forms in the same genomic locations or across
multiple genomic locations create similar challenges to the de Bruijn graphs. These ambiguities
are compounded when the mapping must take into account mismatches due to sequencing
errors as well as biological variations.

The limitations of the individual tools can potentially be overcome by combining multiple
different assemblies in ensemble. As each tool and set of parameters results in a different set
of correctly assembled contigs, accurately selecting these correctly assembled contigs without

Figure 4. Performance comparison among all assemblers including de novo, genome-guided, and ensemble strategies.
Simulated RNAseq data were used for testing, and the default parameters were used for each assembler. See Tables 1, 3,
and 5 for the actual numbers. The expected number of contigs is 14,040.
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selecting any redundant incorrectly assembled contigs would leverage the strengths of each
methods without the weaknesses of any. However, currently available ensemble strategies
cannot guarantee that the correct sequence is chosen, leading to ensemble assemblies that are
less accurate than individual assemblies. As the selection criteria for ensemble methods
improve, such as with the “Consensus” approach shown here, these methods can also leverage
new assembly approaches that can better handle certain subsets of transcripts (e.g. alternative
splice forms) that may have other weaknesses that prevent them from being competitive as a
general transcript assembly tool.

Overall, as our results demonstrated, transcriptome assemblers can still be improved,
regardless of the approach used. While the genome-guided assemblers generally perform
best when the assembly is performed against the same reference sequence that the RNAseq
data was generated from, this is not always possible. When these sequences differ, the
genome-guided assemblers may have lower accuracy than the de novo assemblers. While
ensemble assembly strategies can potentially improve on accuracy over individual assem-
blies, it is also possible that they instead reduce the accuracy. Improving the performance of
these tools, whether individual assemblers, ensemble strategies, or combined with long-read
sequencing, will improve not only the accuracy of the reconstructed transcriptome but also
the accuracy of downstream analyses, such as sequence annotation, quantification, and
differential expression.
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Overall, as our results demonstrated, transcriptome assemblers can still be improved,
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ensemble assembly strategies can potentially improve on accuracy over individual assem-
blies, it is also possible that they instead reduce the accuracy. Improving the performance of
these tools, whether individual assemblers, ensemble strategies, or combined with long-read
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the accuracy of downstream analyses, such as sequence annotation, quantification, and
differential expression.

Acknowledgements

This work was supported by a grant from the National Science Foundation to ENM (Award #:
1339385).

Author details

Adam Voshall and Etsuko N. Moriyama*

*Address all correspondence to: emoriyama2@unl.edu

School of Biological Sciences and Center for Plant Science Innovation, University of
Nebraska-Lincoln, Lincoln, NE, USA

References

[1] Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics.
Nature Reviews. Genetics. 2009;10:57-63. DOI: 10.1038/nrg2484

[2] Ozsolak F, Milos PM. RNA sequencing: Advances, challenges and opportunities. Nature
Reviews. Genetics. 2011;12:87-98. DOI: 10.1038/nrg2934

Bioinformatics in the Era of Post Genomics and Big Data32

[3] Huang X, Chen XG, Armbruster PA. Comparative performance of transcriptome assem-
bly methods for non-model organisms. BMC Genomics. 2016;17:523. DOI: 10.1186/
s12864-016-2923-8

[4] Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A,
Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A. A survey of best practices
for RNA-seq data analysis. Genome Biology. 2016;17:13. DOI: 10.1186/s13059-016-0881-8

[5] Simonis M, Atanur SS, Linsen S, Guryev V, Ruzius FP, Game L, Lansu N, de Bruijn E, van
Heesch S, Jones SJ, Pravenec M, Aitman TJ, Cuppen E. Genetic basis of transcriptome
differences between the founder strains of the rat HXB/BXH recombinant inbred panel.
Genome Biology. 2012;13:r31. DOI: 10.1186/gb-2012-13-4-r31

[6] Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate: Reference-free
quality assessment of de novo transcriptome assemblies. Genome Research. 2016;26:
1134-1144. DOI: 10.1101/gr.196469.115

[7] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma
F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, et al. Full-length transcriptome
assembly from RNA-Seq data without a reference genome. Nature Biotechnology. 2011;
29:644-652. DOI: 10.1038/nbt.1883

[8] Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X, Lam
TW, Li Y, Xu X, Wong GK, Wang J. SOAPdenovo-trans: De novo transcriptome assembly
with short RNA-Seq reads. Bioinformatics. 2014;30:1660-1666. DOI: 10.1093/bioinformat-
ics/btu077

[9] Peng Y, Leung HC, Yiu SM, Lv MJ, Zhu XG, Chin FY. IDBA-tran: A more robust de novo
de Bruijn graph assembler for transcriptomes with uneven expression levels. Bioinfor-
matics. 2013;29:i326-i334. DOI: 10.1093/bioinformatics/btt219

[10] Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn
graphs. Genome Research. 2008;18:821-829. DOI: 10.1101/gr.074492.107

[11] Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: Robust de novo RNA-seq assembly
across the dynamic range of expression levels. Bioinformatics. 2012;28:1086-1092. DOI:
10.1093/bioinformatics/bts094

[12] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G,
Alekseyev MA, Pevzner PA. SPAdes: A new genome assembly algorithm and its appli-
cations to single-cell sequencing. Journal of Computational Biology. 2012;19:455-477. DOI:
10.1089/cmb.2012.0021

[13] Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WEG, Wetter T, Suhai S. Using the
miraEST assembler for reliable and automated mRNA transcript assembly and SNP
detection in sequenced ESTs. Genome Research. 2004;14:1147-1159. DOI: 10.1101/
gr.1917404

Next-Generation Transcriptome Assembly: Strategies and Performance Analysis
http://dx.doi.org/10.5772/intechopen.73497

33



[14] Martin JA, Wang Z. Next-generation transcriptome assembly. Nature Reviews. Genetics.
2011;12:671-682. DOI: 10.1038/nrg3068

[15] Koren S, Treangen TJ, Hill CM, Pop M, Phillippy AM. Automated ensemble assembly and
validation of microbial genomes. BMC Bioinformatics. 2014;15:126. DOI: 10.1186/1471-
2105-15-126

[16] Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, Delwart EL. An ensemble
strategy that significantly improves de novo assembly of microbial genomes from
metagenomic next-generation sequencing data. Nucleic Acids Research. 2015;43:e46.
DOI: 10.1093/nar/gkv002

[17] Trapnell C, Pachter L, Salzberg SL. TopHat: Discovering splice junctions with RNA-Seq.
Bioinformatics. 2009;25:1105-1111. DOI: 10.1093/bioinformatics/btp120

[18] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,
Gingeras TR. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21.
DOI: 10.1093/bioinformatics/bts635

[19] Kim D, Langmead B, Salzberg SL. HISAT: A fast spliced aligner with low memory
requirements. Nature Methods. 2015;12:357-360. DOI: 10.1038/nmeth.3317

[20] Medina I, Tarraga J, Martinez H, Barrachina S, Castillo MI, Paschall J, Salavert-Torres J,
Blanquer-Espert I, Hernandez-Garcia V, Quintana-Orti ES, Dopazo J. Highly sensitive
and ultrafast read mapping for RNA-seq analysis. DNA Research. 2016;23:93-100. DOI:
10.1093/dnares/dsv039

[21] Maretty L, Sibbesen JA, Krogh A. Bayesian transcriptome assembly. Genome Biology.
2014;15:501. DOI: 10.1186/s13059-014-0501-4

[22] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL,
Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nature Bio-
technology. 2010;28(5):511. DOI: 10.1038/nbt.1621

[23] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie
enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Bio-
technology. 2015;33:290-295. DOI: 10.1038/nbt.3122

[24] Nakasugi K, Crowhurst R, Bally J, Waterhouse P. Combining transcriptome assemblies
from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. PLoS
One. 2014;9:e91776. DOI: 10.1371/journal.pone.0091776

[25] Gilbert D. Gene-omes built from mRNA seq not genome DNA. 7th Annual Arthropod
Genomics Symposium Notre Dame. 2013

[26] Cerveau N, Jackson DJ. Combining independent de novo assemblies optimizes the coding
transcriptome for nonconventional model eukaryotic organisms. BMC Bioinformatics.
2016;17:525. DOI: 10.1186/s12859-016-1406-x

Bioinformatics in the Era of Post Genomics and Big Data34

[27] Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, Ben-Hur A,
Reddy AS. A survey of the sorghum transcriptome using single-molecule long reads.
Nature Communications. 2016;7:11706. DOI: 10.1038/ncomms11706

[28] Salmela L, Walve R, Rivals E, Ukkonen E. Accurate self-correction of errors in long reads
using de Bruijn graphs. Bioinformatics. 2017;33:799-806. DOI: 10.1093/bioinformatics/btw321

[29] Salmela L, Rivals E. LoRDEC: Accurate and efficient long read error correction. Bioinfor-
matics. 2014;30:3506-3514. DOI: 10.1093/bioinformatics/btu538

[30] Hargreaves AD, Mulley JF. Assessing the utility of the Oxford Nanopore MinION for
snake venom gland cDNA sequencing. PeerJ. 2015;3:e1441. DOI: 10.7717/peerj.1441

[31] Cheng B, Furtado A, Henry RJ. Long-read sequencing of the coffee bean transcriptome
reveals the diversity of full-length transcripts. Gigascience. 2017;6:1-13. DOI: 10.1093/
gigascience/gix086

[32] Mei W, Liu S, Schnable JC, Yeh CT, Springer NM, Schnable PS, Barbazuk WB. A compre-
hensive analysis of alternative splicing in paleopolyploid maize. Frontiers in Plant Sci-
ence. 2017;8:694. DOI: 10.3389/fpls.2017.00694

[33] Sharon D, Tilgner H, Grubert F, Snyder M. A single-molecule long-read survey of the
human transcriptome. Nature Biotechnology. 2013;31:1009-1014. DOI: 10.1038/nbt.2705

[34] Minoche AE, Dohm JC, Schneider J, Holtgrawe D, Viehover P, Montfort M, Sorensen TR,
Weisshaar B, Himmelbauer H. Exploiting single-molecule transcript sequencing for eukary-
otic gene prediction. Genome Biology. 2015;16:184. DOI: 10.1186/s13059-015-0729-7

[35] Zhang SJ, Wang C, Yan S, Fu A, Luan X, Li Y, Sunny Shen Q, Zhong X, Chen JY, Wang X,
Chin-Ming Tan B, He A, Li CY. Isoform evolution in primates through independent
combination of alternative RNA processing events. Molecular Biology and Evolution.
2017;34:2453-2468. DOI: 10.1093/molbev/msx212

[36] Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V, Zerbino DR,
Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z, Haimel M, Simpson JT,
Fonseca NA, Birol I, Docking TR, Ho IY, et al. Assemblathon 1: A competitive assessment
of de novo short read assembly methods. Genome Research. 2011;21:2224-2241. DOI:
10.1101/gr.126599.111

[37] Piovesan A, Caracausi M, Antonaros F, Pelleri MC, Vitale L. GeneBase 1.1: A tool to
summarize data from NCBI gene datasets and its application to an update of human
gene statistics. Database: The Journal of Biological Databases and Curation. 2016;2016:
Article number: baw153. DOI: 10.1093/database/baw153

[38] O'Neil ST, Emrich SJ. Assessing de novo transcriptome assembly metrics for consistency
and utility. BMC Genomics. 2013;14:465. DOI: 10.1186/1471-2164-14-465

[39] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
Journal of Molecular Biology. 1990;215:403-410. DOI: 10.1016/S0022-2836(05)80360-2

Next-Generation Transcriptome Assembly: Strategies and Performance Analysis
http://dx.doi.org/10.5772/intechopen.73497

35



[14] Martin JA, Wang Z. Next-generation transcriptome assembly. Nature Reviews. Genetics.
2011;12:671-682. DOI: 10.1038/nrg3068

[15] Koren S, Treangen TJ, Hill CM, Pop M, Phillippy AM. Automated ensemble assembly and
validation of microbial genomes. BMC Bioinformatics. 2014;15:126. DOI: 10.1186/1471-
2105-15-126

[16] Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, Delwart EL. An ensemble
strategy that significantly improves de novo assembly of microbial genomes from
metagenomic next-generation sequencing data. Nucleic Acids Research. 2015;43:e46.
DOI: 10.1093/nar/gkv002

[17] Trapnell C, Pachter L, Salzberg SL. TopHat: Discovering splice junctions with RNA-Seq.
Bioinformatics. 2009;25:1105-1111. DOI: 10.1093/bioinformatics/btp120

[18] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,
Gingeras TR. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21.
DOI: 10.1093/bioinformatics/bts635

[19] Kim D, Langmead B, Salzberg SL. HISAT: A fast spliced aligner with low memory
requirements. Nature Methods. 2015;12:357-360. DOI: 10.1038/nmeth.3317

[20] Medina I, Tarraga J, Martinez H, Barrachina S, Castillo MI, Paschall J, Salavert-Torres J,
Blanquer-Espert I, Hernandez-Garcia V, Quintana-Orti ES, Dopazo J. Highly sensitive
and ultrafast read mapping for RNA-seq analysis. DNA Research. 2016;23:93-100. DOI:
10.1093/dnares/dsv039

[21] Maretty L, Sibbesen JA, Krogh A. Bayesian transcriptome assembly. Genome Biology.
2014;15:501. DOI: 10.1186/s13059-014-0501-4

[22] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL,
Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nature Bio-
technology. 2010;28(5):511. DOI: 10.1038/nbt.1621

[23] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie
enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Bio-
technology. 2015;33:290-295. DOI: 10.1038/nbt.3122

[24] Nakasugi K, Crowhurst R, Bally J, Waterhouse P. Combining transcriptome assemblies
from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. PLoS
One. 2014;9:e91776. DOI: 10.1371/journal.pone.0091776

[25] Gilbert D. Gene-omes built from mRNA seq not genome DNA. 7th Annual Arthropod
Genomics Symposium Notre Dame. 2013

[26] Cerveau N, Jackson DJ. Combining independent de novo assemblies optimizes the coding
transcriptome for nonconventional model eukaryotic organisms. BMC Bioinformatics.
2016;17:525. DOI: 10.1186/s12859-016-1406-x

Bioinformatics in the Era of Post Genomics and Big Data34

[27] Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, Ben-Hur A,
Reddy AS. A survey of the sorghum transcriptome using single-molecule long reads.
Nature Communications. 2016;7:11706. DOI: 10.1038/ncomms11706

[28] Salmela L, Walve R, Rivals E, Ukkonen E. Accurate self-correction of errors in long reads
using de Bruijn graphs. Bioinformatics. 2017;33:799-806. DOI: 10.1093/bioinformatics/btw321

[29] Salmela L, Rivals E. LoRDEC: Accurate and efficient long read error correction. Bioinfor-
matics. 2014;30:3506-3514. DOI: 10.1093/bioinformatics/btu538

[30] Hargreaves AD, Mulley JF. Assessing the utility of the Oxford Nanopore MinION for
snake venom gland cDNA sequencing. PeerJ. 2015;3:e1441. DOI: 10.7717/peerj.1441

[31] Cheng B, Furtado A, Henry RJ. Long-read sequencing of the coffee bean transcriptome
reveals the diversity of full-length transcripts. Gigascience. 2017;6:1-13. DOI: 10.1093/
gigascience/gix086

[32] Mei W, Liu S, Schnable JC, Yeh CT, Springer NM, Schnable PS, Barbazuk WB. A compre-
hensive analysis of alternative splicing in paleopolyploid maize. Frontiers in Plant Sci-
ence. 2017;8:694. DOI: 10.3389/fpls.2017.00694

[33] Sharon D, Tilgner H, Grubert F, Snyder M. A single-molecule long-read survey of the
human transcriptome. Nature Biotechnology. 2013;31:1009-1014. DOI: 10.1038/nbt.2705

[34] Minoche AE, Dohm JC, Schneider J, Holtgrawe D, Viehover P, Montfort M, Sorensen TR,
Weisshaar B, Himmelbauer H. Exploiting single-molecule transcript sequencing for eukary-
otic gene prediction. Genome Biology. 2015;16:184. DOI: 10.1186/s13059-015-0729-7

[35] Zhang SJ, Wang C, Yan S, Fu A, Luan X, Li Y, Sunny Shen Q, Zhong X, Chen JY, Wang X,
Chin-Ming Tan B, He A, Li CY. Isoform evolution in primates through independent
combination of alternative RNA processing events. Molecular Biology and Evolution.
2017;34:2453-2468. DOI: 10.1093/molbev/msx212

[36] Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V, Zerbino DR,
Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z, Haimel M, Simpson JT,
Fonseca NA, Birol I, Docking TR, Ho IY, et al. Assemblathon 1: A competitive assessment
of de novo short read assembly methods. Genome Research. 2011;21:2224-2241. DOI:
10.1101/gr.126599.111

[37] Piovesan A, Caracausi M, Antonaros F, Pelleri MC, Vitale L. GeneBase 1.1: A tool to
summarize data from NCBI gene datasets and its application to an update of human
gene statistics. Database: The Journal of Biological Databases and Curation. 2016;2016:
Article number: baw153. DOI: 10.1093/database/baw153

[38] O'Neil ST, Emrich SJ. Assessing de novo transcriptome assembly metrics for consistency
and utility. BMC Genomics. 2013;14:465. DOI: 10.1186/1471-2164-14-465

[39] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
Journal of Molecular Biology. 1990;215:403-410. DOI: 10.1016/S0022-2836(05)80360-2

Next-Generation Transcriptome Assembly: Strategies and Performance Analysis
http://dx.doi.org/10.5772/intechopen.73497

35



[40] The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids
Research. 2017;45:D158-D169. DOI: 10.1093/nar/gkw1099

[41] Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington
K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M. Pfam: The protein families database.
Nucleic Acids Research. 2014;42:D222-D230. DOI: 10.1093/nar/gkt1223

[42] Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K,
Muruganujan A, Narechania A. PANTHER: A library of protein families and subfamilies
indexed by function. Genome Research. 2003;13:2129-2141. DOI: 10.1101/gr.772403

[43] Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva
EV, Zdobnov EM. BUSCO applications from quality assessments to gene prediction and
phylogenomics. Molecular Biology and Evolution. 2018;35:543-548. DOI: 10.1093/molbev/
msx319

[44] Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: A self-training method for predic-
tion of gene starts in microbial genomes. Implications for finding sequence motifs in
regulatory regions. Nucleic Acids Research. 2001;29:2607-2618

[45] Wang S, Gribskov M. Comprehensive evaluation of de novo transcriptome assembly pro-
grams and their effects on differential gene expression analysis. Bioinformatics. 2017;33:
327-333. DOI: 10.1093/bioinformatics/btw625

[46] Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or
without a reference genome. BMC Bioinformatics. 2011;12:323. DOI: 10.1186/1471-2105-
12-323

[47] Griebel T, Zacher B, Ribeca P, Raineri E, Lacroix V, Guigo R, Sammeth M. Modelling and
simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Research.
2012;40:10073-10083. DOI: 10.1093/nar/gks666

[48] Ono Y, Asai K, Hamada M. PBSIM: PacBio reads simulator—Toward accurate genome
assembly. Bioinformatics. 2013;29:119-121. DOI: 10.1093/bioinformatics/bts649

[49] Yang C, Chu J, Warren RL, Birol I. NanoSim: Nanopore sequence read simulator based on
statistical characterization. Gigascience. 2017;6:1-6. DOI: 10.1093/gigascience/gix010

[50] Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. An extensive evaluation of read
trimming effects on Illumina NGS data analysis. PLoS One. 2013;8:e85024. DOI: 10.1371/
journal.pone.0085024

[51] Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, Charbonneau
A, Constantinides B, Edvenson G, Fay S, Fenton J, Fenzl T, Fish J, Garcia-Gutierrez L,
Garland P, Gluck J, Gonzalez I, Guermond S, Guo J, Gupta A, et al. The khmer software
package: Enabling efficient nucleotide sequence analysis. F1000Research. 2015;4:900.
DOI: 10.12688/f1000research.6924.1

Bioinformatics in the Era of Post Genomics and Big Data36

Chapter 3

Modulation of Gene Expression by Gene Architecture
and Promoter Structure

Aditya Kumar and Manju Bansal

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76051

Provisional chapter

DOI: 10.5772/intechopen.76051

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Modulation of Gene Expression by Gene Architecture 
and Promoter Structure

Aditya Kumar and Manju Bansal

Additional information is available at the end of the chapter

Abstract

Regulation of gene expression is achieved by the presence of cis regulatory elements; 
these signatures are interspersed in the noncoding region and also situated in the coding 
region of the genome. These elements orchestrate the gene expression process by regulat-
ing the different steps involved in the flow of genetic information. Transcription (DNA 
to RNA) and translation (RNA to Protein) are controlled at different levels by different 
regulatory elements present in the genome. Current chapter describes the structural and 
functional elements present in the coding and noncoding region of the genome. Further 
we discuss role of regulatory elements in regulation of gene expression in prokaryotes 
and eukaryotes. Finally, we also discuss DNA structural properties of regulatory regions 
and their role in gene expression. Identification and characterization of cis regulatory ele-
ments would be useful to engineer the regulation of gene expression.

Keywords: DNA structural properties, gene architecture, gene expression, promoter 
structure

1. Introduction

Genome, the blue print of life, is essentially comprised of coding (genes) and noncoding (reg-
ulatory regions and other repetitive sequences) DNA. Genetic information is embedded in 
the form of coding regions (genes) that encode proteins. This flow of information from gene 
to proteins is a multistep pathway viz. transcription that is synthesis of RNA from the DNA 
and continues with the translation which is protein synthesis from RNA. Control of this flow 
of information is crucial for fate of the cell and this phenomenon is known as the regulation 
of the gene expression. The function of the cell is determined by the amount and type of the 
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Genome, the blue print of life, is essentially comprised of coding (genes) and noncoding (reg-
ulatory regions and other repetitive sequences) DNA. Genetic information is embedded in 
the form of coding regions (genes) that encode proteins. This flow of information from gene 
to proteins is a multistep pathway viz. transcription that is synthesis of RNA from the DNA 
and continues with the translation which is protein synthesis from RNA. Control of this flow 
of information is crucial for fate of the cell and this phenomenon is known as the regulation 
of the gene expression. The function of the cell is determined by the amount and type of the 
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RNA and protein molecules that is achieved by the regulation of the gene expression. There 
are various steps involved in this flow of information process such as chromatin domain orga-
nization, transcription (initiation, elongation and termination), post-transcriptional modifica-
tion, RNA export (exclusive for eukaryotes), translation and mRNA degradation. Among all 
these different regulated stages of gene expression transcription initiation is the most uti-
lized point of regulation. Transcription event is coupled with the translation process in the 
case of prokaryotes due to availability of ribosomes in the same compartment (due to lack of 
nucleus). However, transcription process is far more complicated in case of eukaryotes due 
to involvement of additional steps that are RNA splicing and RNA export. These additional 
steps provide extra stages for the regulation of gene expression process in eukaryotes.

Regulation of gene expression is achieved by harnessing the regulatory elements, located in the 
noncoding as well as coding regions of the genome. Current chapter focuses on the different 
structural and functional elements present in the coding regions (genes) and noncoding regions 
(regulatory regions), which are utilized by the cell to regulate the gene expression process.

2. Gene architecture

2.1. Noncoding elements of the genes

Genes are the repositories for primary information content of inheritance in genome and their 
expression determines the phenotypes, which in turn decides future of the cell in multicellu-
lar organisms. Functioning of gene products viz. mRNA (messenger RNA) and ncRNA (non-
coding RNA) is modulated by complex gene regulatory networks. Eukaryotic genomes are 
mostly comprised of compositional properties (repetitive sequences, codon usage bias, muta-
tional information, etc.) and functional signals (TATA box, Inr-element, cap signal, Kozak 
sequence, GT-AG splicing sites, etc.) [1]. Processing of the transcript is an important phase in 
the gene expression process, which also provides additional level of regulation in eukaryotes. 
Transcription and translation events are coupled in prokaryotes due to the availability of 
ribosomes to the mRNA while transcript undergoes several levels of processing in nucleus 
and finally processed transcripts are exported to the cytoplasm for translation in eukaryotes. 
Complexity in the gene structure results into the phenotypic diversity and this complexity 
arises from the occurrence and arrangement of the noncoding elements interspersing the cod-
ing region. Gene expression diversification is achieved by the presence of trailer sequences 
known as untranslated region (UTR) and intervening noncoding sequences known as introns 
[2]. These elements exert several direct and indirect functions.

2.2. Untranslated regions

UTRs are the trailer sequences located at the 5′ and 3′ end of the coding region which are the 
part of the transcribed mRNA but remain untranslated. Presence of alternative promoters or 
more than one transcription start site result into multiple 5’ UTRs which in turn controls the 
gene expression in several ways [3–6]. G quadruplex or G4 structure is a predominant sec-
ondary structure situated in the guanine rich 5’ UTRs which in turn hinders the translation 
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process [7–9]. Highly and constitutively expressed genes are associated with short and poor in 
guanine base 5’ UTR in order to facilitate the translation process [10]. Sequential unwinding 
of natural stem loop structures located in the 5’ UTR in some mRNA is found to be associated 
with efficient translation [11–13].

IRES (internal ribosome entry sites), located usually upstream of the initiation codon (in the 
5’ UTR) are responsible for the translation initiation in a cap independent mechanism by 
recruiting ribosome near the initiation site [5, 14–16]. The IRES mediated translational regula-
tion occurs under certain stress conditions such as cellular stress, nutritional stress, mitotic 
stress etc. [17–19]. Conserved upstream open reading frames (uORFs) located in the 5’ UTR 
are also found to regulate protein translation, which are followed by main start codon (AUG) 
in the downstream [20–22]. Antibiotic resistance in the pathogenic bacteria is also found to 
be associated with uORFs mediated regulation [23]. In a recent study, fusion of uORF in the 
upstream of the auto-activated immune receptor gene developed the resistance to the plant 
diseases in Arabidopsis and rice [24].

Apart from these regulatory regions located in the 5’ UTR, the 3’ UTR is also rich in regulatory 
sequences located at the end of the coding sequence or gene. The conserved motif/s associated 
with 3’ UTR play crucial roles in gene expression at the posttranscriptional level. The 3’ UTR 
perform various regulatory functions, which are providing stability to the mRNA by polyad-
enylation, transcript cleavage, serve the binding site for microRNAs etc. Different isoforms 
of mRNA are derived from the alternative splicing and polyadenylation with alternative 3’ 
UTR. The varying expression levels and spatiotemporal localization for the same protein is 
achieved by differing 3’ UTR sequence in human [25–27]. AU rich elements (AREs) which are 
50 to 150 nucleotide long and associated with multiple copies of pentanucleotide AUUUA 
regulate gene expression by stabilizing the mRNA [28, 29]. The abundance of AREs in the 3’ 
UTR of wide range of gene families indicates significant role in the gene regulation process 
[30]. MicroRNA response elements (MREs) are mostly located in the 3’ UTR region where 
single stranded 22 nucleotide long microRNA binds to regulate the expression of mRNA [31]. 
Poly(A) tail is stretch of adenosine (around 250 nucleotide) attached at the 3′ end of the RNA 
by adenylation process. The poly(A) binding proteins (PABP), specific class of regulatory pro-
teins (nuclear and cytoplasmic) binds to the poly(A) tail and perform different regulatory 
functions like stability of mRNA, export and decay of the mRNA. These proteins play vital 
role in gene regulation [32–35].

2.3. Intronic regions

An intron is a noncoding DNA sequence that is transcribed but not translated; it is removed 
during the processing of pre-mRNA (precursor mRNA) to final mature RNA also known as 
RNA splicing. There are four different types of introns based on different splicing mechanisms.
Spliceosomal introns are the foremost discovered and well characterized introns, which are 
excised by spliceosome, a ribonucleoprotein complex [36, 37]. Group I introns, widely present 
in mRNA, rRNA and tRNA of variety of organisms including algae, fungi, lower eukaryotes 
and few bacteria [38–42]. Similarly, group II introns are large autocatalytic ribozymes widely 
present in the mitochondria, chloroplast, plants, fungi, yeast and many bacteria, play major 
role in genome evolution [43–46]. The tRNA introns widely present in all domains of life are 
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(regulatory regions), which are utilized by the cell to regulate the gene expression process.
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expression determines the phenotypes, which in turn decides future of the cell in multicellu-
lar organisms. Functioning of gene products viz. mRNA (messenger RNA) and ncRNA (non-
coding RNA) is modulated by complex gene regulatory networks. Eukaryotic genomes are 
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tional information, etc.) and functional signals (TATA box, Inr-element, cap signal, Kozak 
sequence, GT-AG splicing sites, etc.) [1]. Processing of the transcript is an important phase in 
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Transcription and translation events are coupled in prokaryotes due to the availability of 
ribosomes to the mRNA while transcript undergoes several levels of processing in nucleus 
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Complexity in the gene structure results into the phenotypic diversity and this complexity 
arises from the occurrence and arrangement of the noncoding elements interspersing the cod-
ing region. Gene expression diversification is achieved by the presence of trailer sequences 
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[2]. These elements exert several direct and indirect functions.
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more than one transcription start site result into multiple 5’ UTRs which in turn controls the 
gene expression in several ways [3–6]. G quadruplex or G4 structure is a predominant sec-
ondary structure situated in the guanine rich 5’ UTRs which in turn hinders the translation 
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process [7–9]. Highly and constitutively expressed genes are associated with short and poor in 
guanine base 5’ UTR in order to facilitate the translation process [10]. Sequential unwinding 
of natural stem loop structures located in the 5’ UTR in some mRNA is found to be associated 
with efficient translation [11–13].
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achieved by differing 3’ UTR sequence in human [25–27]. AU rich elements (AREs) which are 
50 to 150 nucleotide long and associated with multiple copies of pentanucleotide AUUUA 
regulate gene expression by stabilizing the mRNA [28, 29]. The abundance of AREs in the 3’ 
UTR of wide range of gene families indicates significant role in the gene regulation process 
[30]. MicroRNA response elements (MREs) are mostly located in the 3’ UTR region where 
single stranded 22 nucleotide long microRNA binds to regulate the expression of mRNA [31]. 
Poly(A) tail is stretch of adenosine (around 250 nucleotide) attached at the 3′ end of the RNA 
by adenylation process. The poly(A) binding proteins (PABP), specific class of regulatory pro-
teins (nuclear and cytoplasmic) binds to the poly(A) tail and perform different regulatory 
functions like stability of mRNA, export and decay of the mRNA. These proteins play vital 
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during the processing of pre-mRNA (precursor mRNA) to final mature RNA also known as 
RNA splicing. There are four different types of introns based on different splicing mechanisms.
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role in genome evolution [43–46]. The tRNA introns widely present in all domains of life are 
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exceptionally different as enzymes are involved in the removal of intron and in the joining of 
the two halves [47–49]. Gene regulation is modulated to a great extent by count or number, 
length and position of the introns and they have several direct and indirect biological func-
tions [50]. Multiple protein isoforms of the same gene are derived from the regulated alterna-
tive splicing process in eukaryotes [51–54]. Introns modulate gene expression either by the 
presence of transcriptional regulatory elements or by intron mediated enhancements [55–57]. 
Introns also regulate the gene expression by mediating the chromatin assembly (chromatin 
structure modulation) and controlling the mRNA export [58–61]. Apart from these direct bio-
logical functions, introns also exert indirect influence, for example position and length of the 
intron in the gene have potential role in the regulation of the expression level of the transcript 
[62–65].

3. Promoter structure

3.1. Different promoter elements

Promoters are stretch of genomic sequences where assembly of transcription machinery 
(RNAP and other accessory proteins) takes place prior to initiation of transcription. Although 
prokaryotic and eukaryotic polymerase shares functional similarity, promoter architecture 
differs in complexity [66]. Single type of RNA polymerase along with the specific σ factors 
recognizes promoter elements in prokaryotes [67]. Where −10 and −35 elements located in the 
upstream of the transcription start sites (TSSs) are recognized by different domains specific σ 
factors while UP element, an AT rich sequence situated from −40 to −60 is recognized by CTDs 
of α subunit of RNAP (Figure 1). An extension of extended −10 element, −15 element (TGnT) 
has been also proposed as new element situated from −15 to −12. It has been found that −15 
element determines the overall promoter strength by complementing the weak −10 element.

On the other hand, complexity of promoter architecture in eukaryotes increases from yeast to 
mammals. Different types of RNA polymerases (normally three) are responsible for the gen-
eration of variety of RNA such as ribosomal RNA, messenger RNA (mRNA) and tRNA. As in 
case of bacterial RNAP, archaeal RNA polymerase and eukaryotic RNA Pol II (responsible for 
transcribing mRNA) also require specific factors and promoter elements to initiate transcrip-
tion at specific sites in the genome. Eukaryotic promoters can be broadly classified in to three 
categories such as core, distal and proximal. The core promoter (approximately 50 nucleotide 

Figure 1. Prokaryotic promoter structure: UP element and core promoter elements (−35, −10 extended and −10 element).
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sequence) is a platform where assembly of RNA polymerase and associated general transcrip-
tion factors (GTFs), collectively referred as pre- initiation complex (PIC) takes place [68, 69]. 
Various promoter elements (Table 1) in the vicinity of the transcription start site; upstream 
and downstream regions are recognized by Pol II and other factors, such as TATA box, are rec-
ognized by TATA-binding protein (TBP), the B recognition element (BRE) by TFIIB and other 
elements by TBP-associated factors (TAFs) [70] (Figure 2). Apart from these, core promoter 
regions also consist of Inr element and may also contain downstream elements like down-
stream promoter element (DPE), motif ten element (MTE) (in humans) [71].

Proximal promoters are located in the immediate upstream (up to a few hundred base pairs) 
of core promoter, are comprised of GC box, CAAT box, cis-regulatory modules (CRM) etc. 
CpG islands are stretch of short DNA sequences, which are rich in GC content located in the 
upstream of house keeping and other regulated gene promoters [72, 73]. Proximal promot-
ers mostly work as tethering element for distal promoters instead of acting as direct activa-
tors. On the other hand, distal promoters work from long distance. Enhancers, silencers and 
insulators are present in the distal promoter regions. Enhancers, also known as “promoters 
of promoter” mainly control specificity of gene expression by deploying unique enhancers in 
deferent cell types [74]. Multiple enhancers associated with single gene and single enhancer 
activating multiple genes provides additional level of diversity in phenotypes. In contrast to 
other regulators, enhancers exert their effects over tens of kilobases of DNA [75, 76]. Silencers 
are sequence specific elements where negative transcription factors bind to down regulate the 
gene expression [77]. Insulators are also referred to as boundary elements which block the 
effect of transcriptional activity of neighboring genes [77, 78].

3.2. Promoter structure and nucleosome dynamics

The locations and strengths of transcription factor and RNAP binding sites, also known as 
cis-regulatory elements and list of all nucleosome-binding sites are collectively defining the 
promoter structure. Nucleosomes are not only involved in the packaging of DNA but also 
bring order to the eukaryotic genome by regulating replication and transcription [79, 80]. 
Nucleosomes provide the first line of defense to avoid the unwanted transcription initiation. 

Name Location (relative to TSS at +1) Associated factor/s

BREu Upstream of the TSS TFIIB

TATA box −30/−31 to −23/−24 TBP

BREd Downstream of the TATA box TFIIB

Inr −2 to +4/+5 TAF1 & TAF2

DCE +6 to +11, +16 to +21, +30 to +34 TAF1

MTE +18 to +29 TAF6 &TAF9

DPE +28 to +33 TAF6 &TAF9

Table 1. List of core promoter elements and factors associated with them [72, 73].
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Figure 1. Prokaryotic promoter structure: UP element and core promoter elements (−35, −10 extended and −10 element).
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Gene promoters involved in active transcription require accessibility to the DNA by RNAP 
machinery and associated factors, which is facilitated by nucleosome free region (NFR) or 
nucleosome-depleted region (NDR) [81, 82]. Nucleosome positioning is the probability of find-
ing nucleosome at given genomic location relative to the surrounding locations while nucleo-
some occupancy refers to the average number nucleosomes present at the given genomic 
location in a given population of cells [83, 84]. Cellular gene expression is the final outcome 
of nucleosome dynamics, which itself depends on a complex interplay between nucleosome 
positioning and occupancy [85–87].

3.3. DNA structural properties of promoter regions

DNA sequence not only determines the distinct or base specific interactions but also deter-
mines the overall conformational shape, which is recognized by different proteins in case of 
non-base specific interactions [88]. The higher DNA binding specificity is achieved by comb-
ing different readout mechanisms by DNA binding proteins, with DNA shape playing an 
important role in gene regulation and genome organization [89]. The DNA sequence depen-
dent structural properties can be roughly divided in to two categories, conformational and 
physiochemical [90]. Conformational properties represent the static DNA structure, which 
are influenced by geometry of base pair steps described by translational (shift, slide and rise) 
and rotational (tilt, roll and twist) parameters [91]. These also determine variation in the major 
and minor groove dimensions, which are crucial for DNA protein interactions. The phys-
iochemical properties refer to the dynamic DNA structural properties such as persistence 
length, stress induced duplex destabilization, DNA duplex stability, protein induced bend-
ability and intrinsic curvature etc.

Structural properties of given DNA sequence can be calculated using different di, tri tetra 
nucleotide models reported in experimental as well as theoretical studies. These models 
provide property values (lookup tables) for different oligonucleotides and using these val-
ues and appropriate length (sliding window), a given DNA sequence can be converted in 
to a series of numerical values referred to as a structural property profile. These profiles of 
given DNA sequence show variation in the structural property over the different regions 
of the sequence (Figure 3). An average structural property profile is calculated by taking 
mean of the feature value over all positions by aligning the different sequences [92]. DNA 
structural features such as low stability, protein induced bendability and intrinsic cur-
vature are consistently observed in the prokaryotic and eukaryotic promoters (Figure 4) 
[93–96]. Promoter regions of different categories of transcripts (primary, internal, antisense 
and noncoding RNA) present in prokaryotic transcriptome show distinctly different DNA 

Figure 2. The different types of gene regulatory elements in eukaryotes.
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Figure 3. Schematic illustration showing DNA structural properties profile (example shown for DNA duplex stability) 
using values for di, tri, tetra nucleotide etc. obtained from experimental studies. Stability profile shows variation 
depending on the DNA sequence.

Figure 4. DNA sequence dependent structural properties of the promoter regions (−500 to +500 with respect to 
transcription start site at 0 position). Profiles of four structural properties (DNA duplex stability, DNase I sensitivity, 
Nucleosome Positioning Preference and intrinsic curvature) are shown of eight model systems: (a) H. pylori, (b) E. coli, 
(c) K. pneumoniae, (d) S. cerevisiae, (e) C. elegans, (f) rice, (g) mouse and (h) human. Figure taken (with permission) from 
Bansal et al., [96].
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structural features [97]. Moreover, promoter regions of orthologous genes show conserved 
DNA structural properties in prokaryotes and plants [98–100]. These findings suggest that 
the DNA structural properties of promoter regions are conserved across the various classes 
of organisms.

4. Modulation of gene expression

The activity of RNAP and RNAPII in prokaryotes and eukaryotes respectively is tightly 
regulated to ensure proper level of gene expression. Transcription factors (TFs), proteins 
that bind to specific regulatory sequences (cis-regulatory elements or CRE) are the key reg-
ulators of transcription [101]. The complex gene regulation in eukaryotes is a consequence 
of the large number of transcription factors available and localization of cis-regulatory 
elements.

4.1. Gene expression noise and its regulation

A variation in the copy number of mRNA or protein molecules for a given gene in cell is 
referred as gene expression noise. It is largely under the control of regulatory DNA since it 
is linked with the promoter structure. TATA box with variable strength, transcription fac-
tor binding sites count, strength and their position in the promoter and nucleosome binding 
sites in the regulatory region have enormous effect on gene expression noise in eukaryotes 
[102]. Though transcriptional regulation is quite well understood at molecular level, very 
little is known about gene expression noise in the case of prokaryotes. Transcription factors 
and inducer molecules play a major role in gene regulation process. Additionally, genome 
condensation assisted by nucleoid associated proteins and DNA supercoiling also play a vital 
role in gene regulation in bacteria. Gene expression noise is essential for achieving phenotypic 
heterogeneity and it has been found to be universal in nature.

4.2. DNA structural properties and their role in gene expression

Nucleosome organization in the genome has been found to be closely associated with the 
gene expression and its variability [82, 84, 85]. Genes with dissimilar expression levels tend to 
have sequences with different structural features in order to attain the required nucleosome 
organization [103–105]. Plasticity of gene expression, also known as gene expression vari-
ability is crucial for cell survival, is closely linked with the DNA structural properties of pro-
moter region in S. cerevisiae. Promoters of genes with low plasticity (less responsive) are less 
stable, less bendable and lower nucleosome occupancy compared to the promoters of genes 
with high plasticity (high responsive) [106, 107]. A recent study in six different prokaryotes 
with variable genomic GC content (ranging from 39–58%) shows good correlation between 
DNA structural properties of promoter regions and gene expression. It has been found that 
promoter regions associated with high gene expression are less stable, less bendable and more 
curved as compare to the genes associated with low gene expression as seen from Figure 5. 
Intrinsic curvature was found to be most significant property which is distinctly present in 
the promoter regions associated with high gene expression as compared to those with low 
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gene expression across all organisms [97]. Hence estimation and characterization of DNA 
structural features of promoter regions could be very informative in analyzing the expression 
of associated gene.

5. Conclusions

The growing plethora of genomic information in the form of whole genome sequences 
requires its annotation to make sense of it. Mere delineation of coding sequences (gene iden-
tification) is not enough to get complete understanding of functional genomics since regula-
tion of gene expression orchestrates the fate of cells. Gene expression regulation depends on 
different regulatory elements localized in the noncoding and coding region of the genome. 
Identification and characterization of these regulatory elements is the next level of challenge in 
the genome annotation process. Studies on DNA structural features of the regulatory regions 
show quite promising results toward achieving this goal. Moreover, DNA structural proper-
ties based characterization of regulatory regions is more sensitive and precise as compared to 
sequence-based approaches and most importantly it is universal in nature, applicable to all 
domains of life. Accumulating evidence shows a close relationship between gene expression 
and structural properties of promoter DNA; furthermore, this information can be used to 
engineer the regulatory sequences to modulate gene expression.

Figure 5. Violin plot of four DNA structural property values in the promoter regions (-100 to 0 nucleotide with respect 
to TSS at 0) associated with high and low gene expression in six different prokaryotes. The x-axis shows the probability 
density while y-axis represents the DNA structural feature value. Plots with yellow background indicate the cases which 
failed to reject the null hypothesis using two sample KS test at the level of significance of P = 0.01 (Figure taken from 
Kumar & Bansal, [97]).
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Abstract

In cancer, several alterations driving cell transformation including: imbalances DNA, 
changes in gene expression as well as protein diversity. The transcriptional regulation 
is finely driving and controlled by a large number of molecules, including: SR proteins, 
hnRNPS, RNA, DNA, histones methylation, among others. However, in cancer the regu-
lation is altered. It is little kwon regulations causing alternative splicing in healthy and 
human diseases. The alternative splicing plays an important role in the generation of diver-
sity of transcripts its proteins resulting. The aberrant transcripts variants expressed in can-
cer have shown a great potential as biomarkers or therapeutics targets. In this manuscript, 
we showed the basic in alternative splicing and a simple method using available data for 
detection alternative transcripts expressed in the tree most common human cancer.

Keywords: alternative splicing, breast cancer, prostate cancer, gene expression, 
molecular markers

1. Introduction

The molecular biology of cancer is not completely understood. The human transcriptome 
is an important molecule that to be used as molecular marker, because the RNA is fraction-
ated in coding and non-coding and the functions, locations and structure are very variables. 
However, in cancer is little known complexity of the transcriptome. In this chapter, we focused 
in the showed the landscape of the post-transcriptional modifications (RNA splicing), data 
mining and identification of alternative splicing of available microarray data. We think that 
splicing and alternative splicing is machinery that is high modified in cancer and the changes 
in the disease could play a very important role in the diagnosis and prognosis.
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2. RNA splicing

The gene expression is orchestrated by means of great interaction of molecules including: SR 
proteins, hnRNPS, RNA, DNA, histones methylation, among others. The RNA is a funda-
mental molecule for the life. Recent studies have shown that the human transcriptome is frac-
tionated in coding and non-coding RNA. Interestingly, the coding RNA is representing for 
only 2% of the human transcriptome and the remains is non-coding RNA, suggesting large 
versatility to generate protein diversity. The pre-RNA is matured by several events include, 
addition of a poly (A) tail in the 3′, 5′m7G cap in endings and RNA splicing; those modifica-
tions conferring RNA stability, transport efficiency to the cytoplasm, among others.

The RNA splicing involves several steps and includes specific signals that delimited intronic 
and exonic sequences (splice site, SS), and sequences that help to exon skipping such as: 
intronic splicing enhancer (ISE), intronic splicing silencer (ISS), exonic splicing enhancer 
(ESE) and exonic splicing silencer (ESS) [1]. In addition, five small nuclear ribonocleoproteins 
(snRNP; U1, U2, U4, U5 y U6) and more than 150 additional co-factors that contributing to 
splicing [2, 3].

Basically, four signals that include: branch point, polypyrimidine tract, splice site 5′ and splice site 
3′ [4–6]. Moreover, sequential steps that confer topological changes between RNA and snRNPs 
forming E complex, A complex (ATP dependent), B complex and finally C complex or spliceo-
some, which is the catalytic complex [7]. Additionally, the RNA could be subjected to alternative 
exon skipping by means of alternative splicing AS. The AS is processed using the basic machin-
ery of splicing, and SR and hnRNPs plays an essential role for alternative exon skipping.

The coding RNA is represented by ~25,000 genes, however, more than 300,000 transcripts 
have been reported [8, 9]. The difference between genes and transcripts is probability by alter-
native splicing (AS) regulation. Actually, we know that more than 80% of RNA coding are 
subjected to AS, promoting a great diversity of mRNA and consequently proteins. For exam-
ple, in Drosophila melanogaster, the gene Down Syndrome Cell Adhesion Molecule (Dscam) 
could generate more than 38,000 different mRNAs by means of alternative splicing [10]. These 
findings showed the importance of AS for the biology of the cell.

On the other hand, the long non-coding RNAs (lncRNAs) also could be subject to alternative 
splicing. However, the diversity of lncRNAs transcripts has been poorly studied. It is thought 
that AS in lncRNAs could be implicated in several regulatory processes, mainly mediated 
RNA-RNA, RNA-DNA and RNA-Proteins interaction. All possibility interaction, probability 
could increase the complex regulatory process.

We will focus in coding RNA. The coding RNA only is representing for ~2% of total RNA. It 
is known that in eukaryotic cell there are more events of AS than another organism [11, 12]. 
Among AS patters we found alternative promoters, exon skipping, intron retention, mutually 
exclusive exons, exon scrambling, Alternative 5′ splice site, alternative 3’splice site, alterna-
tive polyadenylation [4]. Interestingly, the proteins product of AS could change their native 
functions. In several human diseases, the AS contributes to diverse cellular process including: 
cell proliferation, migration, adhesion, metastasis, among others [9, 13–16]. The transcripts 
subject to AS and their product could be used as molecular markers and therapeutics targets, 
because only it is expressed in the disease or its expression is increase [11, 17–19].
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3. Alternative splicing and diseases

The AS is regulated by large number of proteins/non-coding RNAs/DNA and large complex 
network interactions among them provide the perfect capacity of cell regulation. In addi-
tion, the posttranscriptional regulation is orchestrated so finely that the cells have capacity to 
response rapidly before a stimulus and the cell adjust their proteome. Additionally, the cell is 
exposed daily to several toxics agents, UV radiation, promoting vulnerability to mutations and 
misregulation. Particularly, the mutations plays an important role in aberrant AS that cause dis-
eases especially neuromuscular, neurodegenerative and multifactorial diseases as cancer [20].

Three sequences are extremely important for RNA processing and mature, the 5′, 3′ splice site; 
5′, 3′ introns end and the branch point sequence, which is usually located at ~40 upstream of 
3’splice site, because contain the specific sequences of recognition by spliceosome for precise 
exon joining [21]. However, mutations in those sites disrupt the correct spliceosome assem-
bly. Approximately 10% of genetic diseases are cause by point mutations that disrupt the 
interaction between RNA and spliceosome [22, 23].

The class mutation and locations in the genome, contributing to different variants of AS such as: 
exon skipping, exon retention, alternative 5′ and 3′, among others. The severity of the disease 
could be represented by intensity of expression of the mutate gene, for example: In spinal mus-
cular atrophy (SMA) the SMN2 gene has C → T change in the exon 7, this change promotes an 
exon skipping (SMN∆7) and their expression is proportionally mayor ~80% than ~ 20% in the 
healthy. Other case is in Duchenne muscular dystrophy (DND), in the dystrophin gene there is 
a substitution of T → A in the exon 31, promoting this exon skipping. In cystic fibrosis, the exclu-
sion of the exon 9 in CFTR modifying the severity of the disease. In the Peutz-Jeghers syndrome 
the alternative transcript of LBK1 is expressed as consequence of change IVS2 + 1A > G [24].

4. Alternative splicing and cancer

In cancer, several alterations are involved to cell transformation, recently studies have 
showed that the AS plays an important role in cancer development, because change the 
transcriptomics and consequently the proteome; contributing to cell transformation [19, 25]. 
However, there are few studies focused on the identification of transcripts variants in cancer. 
Computational studies in cancer derived of expression sequence tags has showed that the AS 
in cancer was slightly lower in tumors than normal tissues [26]. The question is what is the dif-
ference between AS in cancer tissues and normal tissues? The aberrant transcripts expressed 
in cancer have shown a great potential as biomarkers or therapeutics targets. In breast cancer, 
CD44 gene can to transcribe seven alternate transcripts; the transcript variants five and seven 
have been involved in diverse pathologies, but the transcript six only is expressed in meta-
static cancer and tumorigenic cell lines. These finding suggesting that an alternative transcript 
six of CD44 could play role in metastasis process [27, 28]. The BRCA1 has been involved in 
diverse types of cancer, in breast malignancies the mutation c.591C > T is implicated in skip-
ping of exon 18 in BRCA1 transcript, the mutation constitute an important prognostic factor 
in familiar breast and ovarian cancer [29]. In gastric cancer, the KIT gene has a deletion of ~40 
nucleotides, this cleavage promotes aberrant AS and loss of functional protein resulting [30].
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2. RNA splicing
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3. Alternative splicing and diseases
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a substitution of T → A in the exon 31, promoting this exon skipping. In cystic fibrosis, the exclu-
sion of the exon 9 in CFTR modifying the severity of the disease. In the Peutz-Jeghers syndrome 
the alternative transcript of LBK1 is expressed as consequence of change IVS2 + 1A > G [24].
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In cancer, several alterations are involved to cell transformation, recently studies have 
showed that the AS plays an important role in cancer development, because change the 
transcriptomics and consequently the proteome; contributing to cell transformation [19, 25]. 
However, there are few studies focused on the identification of transcripts variants in cancer. 
Computational studies in cancer derived of expression sequence tags has showed that the AS 
in cancer was slightly lower in tumors than normal tissues [26]. The question is what is the dif-
ference between AS in cancer tissues and normal tissues? The aberrant transcripts expressed 
in cancer have shown a great potential as biomarkers or therapeutics targets. In breast cancer, 
CD44 gene can to transcribe seven alternate transcripts; the transcript variants five and seven 
have been involved in diverse pathologies, but the transcript six only is expressed in meta-
static cancer and tumorigenic cell lines. These finding suggesting that an alternative transcript 
six of CD44 could play role in metastasis process [27, 28]. The BRCA1 has been involved in 
diverse types of cancer, in breast malignancies the mutation c.591C > T is implicated in skip-
ping of exon 18 in BRCA1 transcript, the mutation constitute an important prognostic factor 
in familiar breast and ovarian cancer [29]. In gastric cancer, the KIT gene has a deletion of ~40 
nucleotides, this cleavage promotes aberrant AS and loss of functional protein resulting [30].
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In the healthy cell a several proteins are key for DNA repair, transcript regulators, among 
others. The BCL protein is very important in programed cell death. However, the cancer cell 
up regulates the expression and AS of BCL-xL, promoting the expression of long protein 
involved in anti-apoptotic process. In contrast, with short protein BCL-xS is involved in the 
apoptosis [31]. In ovarian cancer was found a new alternative transcript of p53 (TP53INP2) its 
expression is strongly associated to migration and cell invasion [32] its expression is associ-
ated to adverse prognosis [33]. The leukemia is the most frequency malignance in childhood, 
this neoplasia is not the exception also has been identifying AS in several transcripts includ-
ing: CCAR1 promote the complex Par-4/THAP1 y Notch3 [34] and confer unfavorable prog-
nosis as well as hMLH1Delta6 [35]. The Ikaros is a suppressor tumor gene, the variant IK11 is 
associated to proliferation and anti-apoptotic process [36].

5. Alternative splice transcript/proteins as molecular markers and 
therapeutic targets

The great challenge in cancer is the identification of the molecular markers and therapeutic 
targets. The proteins and transcripts products of AS are a magnify molecules because open 
some new opportunities in cancer. The aberrant AS is a consequence of malignant transforma-
tion, the mutations and gene expression modulation promote the expression of new molecules 
that confers advantage to cancer cell, such as: cell proliferation, migration, invasion, evading 
programed death, among others. In this context, the identification of molecules expressed 
in cancer could be a best molecular marker as well as treatment targets, because only are 
expressed in pathological tissue. There is a little information about of AS profiles in cancer, 
nevertheless, some molecules have been used such as molecular markers. The CD44 isoforms 
be predictive to anti CD44 treatment in many types of cancer [37]. The androgen receptor 
AR-V7 has been used as a predictive marker [38], patients who expressed V7 isoforms are 
resistant to therapy using enzalutamide and abiraterone [39]. The isoforms of SLC39A14 are 
used to detection of non- invasive colorectal cancer and the isoform is specific of the colon and 
rectum [40, 41]. The new transcript variant of VNN1 also be specific of cancer colon cancer 
and is used detection by their specificity [42].

The prospect for treatment of cancer is based on antibodies specifics for isoform expressed 
exclusively in the disease. However, there are other strategies that also could be used with 
RNA target, such as: using stable antisense RNAs, this approach could be used in different 
types of RNAs (coding and non-coding RNA) inclusively pre-RNA. The interference RNA 
is other strategy used in the elimination of aberrant expressed transcripts or even splicing 
variant [43].

6. Alternative splicing methods for detection

The mRNA splice is easily visualized using several tools for molecular biology; the most 
used is the RT-PCR. The implications for AS detection using the PCR, is based on primers 
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design. Usually the primers are flanking the exon skipping; however, this method not could 
detect novel splice transcripts. The in situ hybridization is other method that is used for AS 
detection as well as PCR this method no could detect novel splice sites. In the last 20 years has 
been developed massive method for detection gene expression. These tools have provided 
quickly gene expression profiles diseases-associated. Nowadays, gene expression microar-
rays and next generation sequencing are being used for detection novel molecules expressed 
in diverse diseases, include alternative mRNA spliced. Actually, the microarray gene expres-
sion (MGE) can measure exon expression, in this context, the low expression or suppression 
in particular probe set could be indicating AS Figure 1. Up to day, there are 25,252 assays 
performed with Affymetrix Human Exon 1.0 ST; 39,836 assays using Affymetrix GeneChip 
Human Gene 1.0 ST; and the most recently version 2422 assays with Affymetrix GeneChip 
Human Gene 2.0 ST, the experiments were performed between 8/7/07 and 8/8/16, 8/12/08 
and 12/1/17 and 8/1/13 to 12/19/17, respectively each version array. Moreover, the microar-
rays data are available for data mining provides extraordinary information about profiles in 
human diseases including cancer. Additionally, the microarray analysis can be driving to 
explorer the AS.

7. Alternative splicing in the most common cancer types

The most common type of cancer is the breast cancer with more than 255,000 new cases 
expected in the United States in 2017, followed lung and prostate cancer according to National 
Cancer Institute. The question is Which are the transcripts alternatively spliced between nor-
mal and cancerous tissues? The major difficulty has been to determine whether the splicing 
changes detected in cancer are pathogenic [26]. Then we showed different analysis using high 
density microarrays to identify AS in three models of cancer. We performed data mining of 
Affymetrix microarrays. The data were download of ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/) [44] or Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 
[45]. The microarray analysis was performed using Partek Genomics Suite v7.17 according to 
previous reports [46].

Figure 1. Representative probe set signal in microarray and alternative splicing detection. The figure showed in the top 
the probe set, the markers that inspect exon level expression. In the middle part depicted signal intensity in microarray 
hybridization. On the bottom the alternative splicing by low signal intensity is shown.
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types of RNAs (coding and non-coding RNA) inclusively pre-RNA. The interference RNA 
is other strategy used in the elimination of aberrant expressed transcripts or even splicing 
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design. Usually the primers are flanking the exon skipping; however, this method not could 
detect novel splice transcripts. The in situ hybridization is other method that is used for AS 
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quickly gene expression profiles diseases-associated. Nowadays, gene expression microar-
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and 12/1/17 and 8/1/13 to 12/19/17, respectively each version array. Moreover, the microar-
rays data are available for data mining provides extraordinary information about profiles in 
human diseases including cancer. Additionally, the microarray analysis can be driving to 
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The most common type of cancer is the breast cancer with more than 255,000 new cases 
expected in the United States in 2017, followed lung and prostate cancer according to National 
Cancer Institute. The question is Which are the transcripts alternatively spliced between nor-
mal and cancerous tissues? The major difficulty has been to determine whether the splicing 
changes detected in cancer are pathogenic [26]. Then we showed different analysis using high 
density microarrays to identify AS in three models of cancer. We performed data mining of 
Affymetrix microarrays. The data were download of ArrayExpress (https://www.ebi.ac.uk/
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8. Breast cancer

We performed analysis using the data set E-GEOD-81838 available in ArrayExpress 
web page or GEO-GSE81838 available in GEO, the data that we used was published by 
Lehmann et al. [47]. The data set was established by 10 breast tumors and 10 stromal 
cells. Our analysis showed 605 differential and alternatively spliced transcripts, the top 10 
overexpress and suppressed are showed in the Table 1. We showed the most significant 
over and down expressed. The DTL transcript have 15 exons, is over expressed in tumor 
cell and DTL showed a potential alternative cap site Figure 2 The FGF7 transcript have 
four exons, the heat map showed two apparent alternative site; cap and polyadenylation 
Figure 3.

Gene Symbol RefSeq p-value Fold-Change

DTL NM_001286229 1.45E-46 4.97616

ESRP1 NM_001034915 3.48E-77 3.86032

HOOK1 NM_015888 1.36E-71 3.69894

TTK NM_001166691 3.31E-42 3.6733

GRHL1 NM_198182 4.13E-44 3.5722

ASPM NM_001206846 7.69E-67 3.53763

DLGAP5 NM_001146015 9.97E-41 3.51451

OCLN NM_001205254 1.02E-19 3.4842

ELF5 NM_001243080 1.35E-12 3.41892

TDRD5 NM_001199085 1.07E-42 3.33299

INHBA NM_002192 6.07E-12 −2.99379

TSHZ2 NM_001193421 1.53E-05 −3.01074

FGF10 NM_001142556 1.27E-13 −3.01537

PDZRN4 NM_001164595 4.88E-21 −3.0344

NEXN NM_001172309 6.90E-53 −3.03644

CXCL12 NM_000609 7.58E-23 −3.06879

IGF1 NM_000618 7.66E-16 −3.46073

COL8A1 NM_001850 6.71E-20 −3.50649

FGF7 NM_002009 3.49E-19 −4.07332

FGF7P2 OTTHUMT00000157659 6.90E-12 −4.13171

Table 1. Main genes whit potential alternative splicing in breast cancer.
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Figure 2. Differential exon expression of DTL gene. The figure showed in the top tree transcripts variants reported. The 
middle part sowed the level expression, the line red indicates tumor samples and blue indicate stroma samples. The heat 
map showed exon level expression on the far left, the exon is supressed suggesting an alternative splicing.

Figure 3. Differential exon expression of FGF7 gene. The figure showed in the top one transcript variant reported, in the 
middle indicates level expression; the blue line indicates stroma samples and the line red indicates tumor samples. The 
heat map showed exon level expression on the far left and right, the exons are supressed suggesting that there are two 
new potential alternative transcripts.
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9. Lung cancer

The analysis in lung cancer was performed using data set E-GEOD-30979 available in 
ArrayExpress web page or GEO-GSE30979, the data was published by Leithner et al. [48]. The 
model was hypoxic-based in lung cancer. Our analysis revealed 101 transcripts expressed dif-
ferentially also could have potentially alternative splicing, in the Table 2 we showed the top 
10 over and suppressed transcript identifies in this analysis. One of the most significant AS 
transcripts was LOX, this transcript has six exons. Our results showed a potential alternative 
site in cap Figure 4. The CEACAM6 was the supressed in hypoxic condition, also apparently 
showed an alternative cap site Figure 5.

Gene symbol RefSeq p-value Fold-Change

MROH9 NM_001163629 8.67E-26 2.95561

LOX NM_001178102 1.53E-21 2.66476

CLGN NM_001130675 4.13E-18 2.49403

MME NM_000902 1.73E-34 2.47655

DDIT3 NM_001195053 9.74E-10 2.46406

NUCB2 NM_005013 5.49E-34 2.41954

FICD NM_007076 8.59E-07 2.36754

DNAJB9 NM_012328 6.35E-15 2.35193

GBE1 NM_000158 2.04E-60 2.24392

ADM NM_001124 2.06E-08 2.20975

BPIFA1 NM_001243193 2.45E-05 −2.91878

IGKC AF113887 9.63E-15 −2.93589

TOP2A NM_001067 3.08E-75 −3.05223

SFTPB NM_000542 2.40E-09 −3.0864

HP NM_001126102 0.00045976 −3.12945

PI15 NM_015886 8.33E-14 −3.13972

IGKV3OR2–268 OTTHUMT00000330418 0.000711524 −3.52251

IGKV2D-30 OTTHUMT00000323285 0.00240377 −3.55542

CEACAM6 NM_002483 6.87E-11 −3.68686

CEACAM5 NM_001291484 2.69E-11 −3.8858

Table 2. Main genes whit potential alternative splicing in lung cancer.
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Figure 4. Differential exon expression of LOX gene. The figure showed in the top two alternative transcripts reported, 
the middle part the blue line indicates hypoxic model and the red line indicates normoxic model. The heat map showed 
exon level expressions on the far right two probe set are supressed, both markers inspection one exon. Our results could 
indicate the expression is the LOX NM_001178102 transcript variant.

Figure 5. Differential exon expression of CEACAM6 gene. The figure showed in the top one transcripts, in the middle 
parte the blue line indicates hypoxic model and the red line indicates normoxic model. The heat map showed exon level 
expression, on the far left one marker is supressed indicating a potential fractioned exon, consequently alternative cap site.
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exon level expressions on the far right two probe set are supressed, both markers inspection one exon. Our results could 
indicate the expression is the LOX NM_001178102 transcript variant.

Figure 5. Differential exon expression of CEACAM6 gene. The figure showed in the top one transcripts, in the middle 
parte the blue line indicates hypoxic model and the red line indicates normoxic model. The heat map showed exon level 
expression, on the far left one marker is supressed indicating a potential fractioned exon, consequently alternative cap site.
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10. Prostate cancer

The prostate cancer is one of the most common malignance in the worldwide. For this chapter 
we performed data mining using the data set E-GEOD-66852 available in ArrayExpress web 
page or GEO-GSE66852, the data was published by Nouri et al. [49]. Our results showed 777 
transcripts that have significant differential exon expression, the most significant over and 
down expressed are shown in the Table 3. Our results showed the over expression in the 
CCDC80 transcript also showed an alternative spliced site in the exon six Figure 6. The down 
regulate transcript was DLGAP5, this transcript showed two potential sites of splicing; in the 
exon four and eight Figure 7.

Gene symbol RefSeq p-value Fold-Change

CCDC80 NM_199511 2.98E-52 12.3906

PLA2G2A NM_000300 1.48E-25 9.88943

PCDH11X NM_001168360 6.22E-45 8.56495

RIMS1 NM_001168407 2.78E-104 7.77511

SI NM_001041 1.17E-118 7.63493

IGFBP3 NM_000598 5.86E-35 7.56274

NLGN1 NM_014932 2.60E-22 7.29711

PCDH11X NM_001168360 3.23E-36 6.91453

LRRN1 NM_020873 4.82E-16 6.45031

EPB41L4A NM_022140 8.22E-55 6.22688

SHCBP1 NM_024745 1.26E-42 −14.8909

KIF20A NM_005733 4.31E-69 −15.7441

HMMR NM_001142556 5.84E-65 −16.2617

FAM111B NM_001142703 3.52E-18 −17.0768

MELK NM_001256685 3.51E-64 −17.2272

HIST1H3I NM_003533 1.58E-10 −19.3335

TOP2A NM_001067 5.06E-126 −23.1938

PBK NM_001278945 4.11E-38 −24.005

NCAPG NM_022346 2.24E-64 −24.1474

DLGAP5 NM_001146015 4.89E-73 −32.3098

Table 3. Main genes whit potential alternative splicing in prostate cancer.
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Figure 6. Differential exon expression of CCDC80 gene. The figure showed in the top two alternative transcripts, the 
middle part the blue line indicates parental cells model and the red line indicates transdifferentiated cells model. The 
heat map showed exon level expression, on the middle transcript one marker is supressed indicated by blue color in 
transdifferentiated model.

Figure 7. Differential exon expression of DLGAP5 gene. The figure showed in the top two alternative transcripts. The 
middle the blue line indicates parental cells model and the red line indicates transdifferentiated cells. The heat map 
showed exon level expression on the right side two markers were supressed in the parental model. Our results suggest 
two additional transcript variants non-reported are expressed in this model.
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11. Conclusions

The alternative splicing is an important transcriptional mechanism that promote protein 
diversity. In cancer, several alterations in AS has been reported. In this chapter, we showed 
the generalities of alternative splicing process, the implications of AS in human diseases. The 
potential use of alternative transcript expressed in cancer as molecular markers and thera-
peutic targets. Finally, a simple method for identification of alterative transcripts expressed in 
three models of cancer using available dataset of Affymetrix.
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Abstract

The cost to extract one new biomarker within genomic sequences is very huge. This
chapter adopts a scalable approach, developed previously and based on MapReduce
programming model, to extract maximal repeats from a huge amount of tagged whole
genomic sequences and meanwhile computing the similarities of sequences within the
same class and the differences among the other classes, where the types of classes are
derived from those tags. The work can be extended to any kind of genomic sequential
data if one can have the organisms into several disjoint classes according to one specific
phenotype, and then collect the whole genomes of those organisms. Those patterns, for
example, biomarkers, if exist in only one class, with distinctive class frequency distribu-
tion can provide hints to biologists to dig out the relationship between that phenotype and
those genomic patterns. It is expected that this approach may provide a novel direction in
the research of biomarker extraction via whole genomic sequence comparison in the era of
post genomics.

Keywords: biomarker, comparative genomics, class frequency distribution, maximal
repeat, MapReduce programming

1. Introduction

It is very attractive and challenging to discover markers [1] from genomic sequences and then
to use these markers for genetic tests [2] to diagnose diseases and for personalized medicine to
adverse drug responses [3, 4]. Nowadays, genome-wide association studies (GWASs) [5] have
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already examined single-nucleotide polymorphisms (SNPs) across human genomes to identify
specific SNPs related to some diseases, for example, diabetes, heart abnormalities, Parkinson
disease, and Crohn disease [6]. Furthermore, GWAS is also used to predict cancer [7] and to
influence human intelligence [8].

Most of GWASs are achieved with SNP arrays [9]. The “Illumina” [10] uses the “whole-
genome genotyping” to interrogate SNPs across the entire genome to obtain the most compre-
hensive view of genomic variation; the Affymetrix Genome-Wide Human SNP Array 6.0
features 1.8 million genetic markers which includes more than 906,600 single-nucleotide poly-
morphisms (SNPs) [11]. The majority of these SNPs are designed to investigate the coding
regions of genes in genomic sequences. However, some of the non-coding regions, once being
mistaken as “junk DNA,” are believed to contain functions to regulate gene transcription and
to account for the genetic differences between individuals [12]. Although, on the one hand, the
number of SNPs on one chip may be several hundreds of thousands, on the other hand, its
coverage is still not enough [13] to figure out the relationship between genotypes and pheno-
types in humans as given in the database of “dbGaP” [14].

As the era of post genomics with Next-Generation Sequencing (NGS) is coming, it is expected
that the cost of genomic sequencing is decreasing and the availability of complete whole
genomes of individual creatures is becoming popular. After using NGS for DNA sequencing
[15], as shown on the right side in Figure 1, for example, one creature, for example, a virus, is
supposed to contain three chromosomes with eight genotypes. On the other side of Figure 1,
there are three phenotypes, for example, “Drug Resistance” “Envelope,” and “Contents,”
inspected and detected by three domain experts, respectively. Under the assumption that these
three phenotypes are totally dominated by those eight genotypes, represented as different
icons, without considering the epigenetics [16], as shown in Figure 2, it is difficult for biologists
in wet laboratory to analyze aimlessly the relationships among these phenotypes and those

Figure 1. An example of one creature with three phenotypes and eight genotypes.
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genotypes without further bioinformatics information or techniques such as comparative
genomics [17].

With more and more complete whole genomes of distinctive creatures being available and
popular in the coming days, it is very interesting and desired to extract common significant
subsequences as candidate genomic markers as genotypes via comparing these creatures’
whole DNA sequences according to the classes (or types) of their phenotypes observed and
specified by domain experts. Figure 3 shows the conceptual diagram of the corresponding
classes for each of these three phenotypes given in Figure 1. With precise observations or
experiments (phenotypes), biologists or experts can divide these creatures with complete
whole genomes into disjoint classes if possible. Then, it is highly expected for biologists that
some distinctive patterns (genotypes) hidden within their DNA sequences can be extracted as
the candidates of class markers (phenotypes) if the frequency distributions of these patterns
among classes are extremely biased, or some patterns are just in one class solely and appear in
all instances belonging to that class ideally. To achieve the earlier-mentioned goal, one needs to
extract repeats and to compute class frequency distributions of these repeats from a huge
amount of tagged genomic sequences, where the types of classes are derived from the tags.

Due to the availability of genomic sequences in National Center for Biotechnology Information
(NCBI) [18], The Cancer Genome Altas (TCGA) [19], it is interesting to have class frequency
distribution of maximal repeats from these tagged genomic sequences for mining the bio-
marker or specific patterns. As the age of Next-Generation Sequencing (NGS) is going to be
introduced for the project “Cancer Moonshot” in the National Cancer Institute [20], it is very

Figure 2. Example: how to identify the relationships among genotypes and phenotypes as described in Figure 1.
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attractive to identify specific biomarkers from these genomic sequences with tags, such as
cancer types or distinctive genotypes. Figure 4 gives the conceptual diagram of how to reduce
the gap between phenotypes and genotypes by using the phenotypes as classes to identify
those subsequences that appear in unique class only as biomarkers.

Figure 4. The conceptual diagram of reducing the gap between phenotypes and genotypes.

Figure 3. Mining the relationship of phenotypes and genotypes via classes comparison.
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The remainder of this chapter is organized as follows. Section 2 gives the review of potential
applications with class frequency distributions of maximal repeats. Section 3 shows the scal-
able approach to extract maximal repeat from tagged sequential data. Section 4 describes the
most recent work [21] that compute co-occurrences of DNA maximal repeat patterns
appearing in both humans and viruses. Section 5 concludes and discusses on future works.

2. Potential applications with class frequency distribution of maximal
repeats extracted from tagged sequential data

The previous work in [22] was a scalable approach based on Hadoop MapReduce program-
ming model to overcome the computational bottleneck of using single computer with external
memory [23, 24]. Furthermore, it had been applied for a USA patent (US-2017-0255634-A1) [25]
whose publication data is as “Sep. 7, 2017” [25]. Recently, in these 2 years, many novel and
potential applications, derived from that work, were launched in diverse fields successfully,
due to its scalability being able to handle a huge amount of sequential data. There were many
experiments in diverse applications with a huge amount of tagged sequential data, such as
textual data for trend analysis [26–28], genomic sequences for biomarker identification [21, 29,
30], time-stamped gantry sequences for significant travel time intervals [31] and, most recently,
the sequences of product traceability for quality control [32].

3. Methods

The scalable approach of maximal repeat extraction adopted in this chapter is based on
Hadoop MapReduce programming model, and the details can be found in [22]. To illustrate
the concept of the earlier approach clearly, as shown in Figure 5, there are 20 creatures
generated manually. Each of them is with three phenotypes, “Drug Resistance,” “Envelope,”
and “Contents,” as given in Figure 3, and all of its chromosomes are concatenated into one line
which may contain genotypes including motifs, domains, or unknown DNA segments that are
represented as icons for simplicity. Even though with the conceptual diagram as shown in
Figure 5, it is still very difficult for users to catch the hidden connection (or relationship)
among these three phenotypes and those icons (genotypes) at first glance, let alone each of
these icons (genotypes) presents one continuous subsequence whose length is not fixed and its
location is unknown within chromosomes.

To reveal the possible mapping of phenotype “Drug Resistance,” for example, to genotypes
on purpose, Figure 6 presents the rearrangement in the order of these 20 chromosomes
which may contain icons as hidden or unknown DNA segments. The mapping of different
types of phenotype “Drug Resistance” to the corresponding genotypes (icons) can be
observed. Similarly, one can have the mapping of different types of phenotype “Envelope”
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and “Contents” to the corresponding genotypes (icons). Due to the page limitation, the
corresponding mapping of figures for “Envelope” and “Contents” are given in the supple-
ments. Focusing on the repeats whose class frequency distributions are biased, as shown in

Figure 5. Each of 20 creatures is with three kinds of phenotypes as given in Figure 3 and all of its chromosomes are
concatenated as one line containing several icons as motif, domain, or unknown patterns.
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Figure 7, one can estimate these repeats as candidate class markers which can be the clues for
further experiments of analyzing the mapping of phenotypes and genotypes derived from 20
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4. Case study: mining for the co-occurrences of DNA maximal repeat
patterns in both human and viruses

There were three studies with a huge amount of genomic sequences [21, 29, 30] based on the
scalable approach of maximal repeat extraction with class frequency distribution mentioned in
this chapter. This chapter only describes the most recent work [21] that the co-occurrences of
DNA maximal repeat patterns appearing in both humans and viruses are extracted via a
scalable approach that is based on Hadoop distributed computing [22]; that work aimed to
mine for specific DNA patterns within human genomes via observing class frequency distri-
bution of DNAmaximal repeats extracted from the whole genomic DNA sequences of humans
and 559 virus genuses. The detail in [21] is described for reference in the following.

4.1. Genome resources

In [21], Wang et al. extracted significant DNA sequences appearing in both the genomes of
humans and viruses. In this study, the taxonomic level of viruses is “genus” and is selected as

Figure 7. The mapping of phenotypes and genotypes derived from 20 creatures in Figure 5.
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the classes (tags) for further experiments. Experimental resources included the complete whole
genomes of humans (GRCh38.p7 Primary Assembly) downloaded from the NCBI FTP [33]
and that of 559 virus genuses, including 2712 viruses that had genus name and were selected
from the total of 4388 viruses download from in NCBI FTP [34] on January 14, 2017. Table 1
shows the partial statistics of 560 classes, including 559 virus genuses and the humans as
“C248.” Note that each of the 24 human chromosomes is estimated as one individual ins-
tance for observing the frequency distribution among human chromosomes. This chapter, for

Class ID Human and virus genuses No of Instances

C1 Alfamovirus 1

C2 Allexivirus 6

C3 Allolevivirus 3

C4 Alpha3microvirus 2

C5 Alphabaculovirus 40

C6 Alphacarmotetravirus 1

C7 Alphabaculovirus 7

… … …

C247 Human mastadenovirus E 1

C248 HumanGenomes_23_Assembled 24

C249 Hunnivirus 1

C250 Hypovirus 4

C478 Sobemovirus 15

C479 Solendovirus 1

C480 Soymovirus 4

… … …

C553 Xipapillomavirus 1

C554 Xp10virus 5

C555 Yatapoxvirus 2

C556 Yatapoxvirus 3

C557 Zeavirus 1

C558 Zetapapillomavirus 1

C559 Zetatorqueviurs 1

C560 primate papillomaviruses 1

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by
IEEE, 2017.” [21].

Table 1. The partial statistics of 559 virus genuses and human genomes (C248).
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simplicity, only takes the positive-strand DNA sequences of humans and viruses for further
experiments.

4.2. Computational time and environment

To show the scalability of this approach from a practical view of point, as shown in Figure 8,
the computational platform was the Hadoop cluster with eight computing nodes, two name
(master) nodes, and six data (slave) nodes; Table 2 showed the specifications of hardware and
software of one computing node; the computational time was about 37.5 h when the maximum
length of maximal repeat patterns was limited to 500 bp (base pair).

Figure 8. The conceptual diagram of a Hadoop cluster with two name (master) nodes, and six data (worker) nodes;
“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by
IEEE, 2017” [41].

Hardware CPU Intel® Xeon® Processor E5-2630 v3 (8 cores)

RAM 128 GB (16GB*8, ECC/REG DDR4 2133)

Hard Disk 6 TB (SATA3 2 TB*3, 7200 rpm 3.5 inch)

Network Card Intel Ethernet X540 10GBASE-T RJ45 DualPort *4

Software OS CentOS 6.7

Hadoop Hadoop 2.6 (“Cloudera Express 5.4.5”)

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by
IEEE, 2017.” [21].

Table 2. The hardware and software of one computing node in Hadoop cluster.
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Length Virus (only) Human (only) Human and virus

5 426 127 1341

6 245 102 4234

7 84 48 16,454

8 29 26 65,556

9 5 11 262,154

10 1 9 1,048,579

11 956 4093 4,189,216

12 95,386 1,198,404 15,310,125

13 547,437 23,069,913 34,360,563

14 788,030 110,159,534 42,567,207

15 547,766 273,869,697 36,497,761

16 305,641 322,333,237 22,317,495

17 206,969 209,993,387 10,170,128

18 86,585 103,569,439 3,920,359

19 47,417 48,474,700 1,407,005

20 66,719 25,284,157 493,326

21 25,068 15,882,880 175,934

22 18,507 11,902,168 67,700

23 39,947 9,921,624 29,793

24 14,802 8,649,670 14,795

25 12,227 7,794,361 8749

… … … …

98 165 107,159 15

99 710 102,830 15

100 707 99,579 13

101 1607 96,326 13

102 608 93,630 12

103 638 92,129 11

… … … …

460 19 1933 1

461 27 2000 1

462 22 1812 1

463 26 1936 1

464 23 1993

465 19 1817

… … … …
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4.3. The length distribution of DNA maximal repeats in both the genomes of human and
559 virus genuses

Comparing the maximal repeats that appear only in virus (Virus only), only in humans
(Human only) or in both human and virus (Human and virus), Table 3 shows the partial
frequency distribution of maximal repeats whose lengths are from 5 to 500 bp. It is
observed that the majority of those maximal repeats whose length range from 7 to 11
almost belong to the “Human and Virus.” Note that there may exist extra nucleic acid
codes, for example, “N,” within these DNA sequences such that the number of maximal
repeat (length = 5) appearing in both humans and viruses in Table 3 is 1; 341 and that is
great than 45 (= 1024).

4.4. The longest DNA maximal repeat (length = 463 bp) appearing in both the genomes of
human and 559 virus genuses

Table 3 shows the length of the longest maximal repeat extracted in both the genomes of humans
and selected viruses of 559 virus genuses is 463 bp. In [21], the result of blasting two sequences,
“Homo sapiens chromosome 5” (NC_000005.10) and “Human herpesvirus 6B” (NC_000898.1), as
shown in Table 4, that longest repeat appears 109 times within human chromosome 5 and two
times within virus “Human herpesvirus 6B.” To further inspect the longest maximal repeat, as
show in Figure 9, one can find that the longest one is a tandem repeat (TAACCC) and appears
within virus “Human herpesvirus 6B” at two intervals, the front (8249–8711 bp) and tail (161570–
162,032 bp), that are located within the regions of direct repeats (DR) [35]. Figure 10 gives one of
two longest patterns aligned within “Human herpesvirus 6B” (8249–8711 bp) in Figure 9.

4.5. The statistics of DNA maximal repeat patterns (length = 100 bp) appearing in both
human and 559 virus genuses

Table 5, for example, shows the statistics of 13 DNAmaximal repeat patterns (length = 100 bp)
appearing in both human and 559 virus genuses. It is observed that the three repeats as the

Length Virus (only) Human (only) Human and virus

495 7 1542

496 16 1564

497 27 1408

498 14 1451

499 16 1494

500 22 1542

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by
IEEE, 2017.” [21].

Table 3. The partial of frequency distribution of DNA maximal repeats (length 5–500 bp).
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Maximal repeat patterns DF TF Length Class frequency
distribution
(ClassID#DF#TF)

Regular
expression

Human
chromosome
(GRCh38.p7
Primary assembly)

Viruses

ctaaccctaaccctaaccctaaccctaac 2 111 463 (C248#1#109)
(C442#1#2)

(TAACCC)n 5 Human
herpesvirus
6Bcctaaccctaaccctaaccctaaccctaa

ccctaaccctaaccctaaccctaacccta

accctaaccctaaccctaaccctaaccct

aaccctaaccctaaccctaaccctaaccc

taaccctaaccctaaccctaaccctaacc

ctaaccctaaccctaaccctaaccctaac

cctaaccctaaccctaaccctaaccctaa

ccctaaccctaaccctaaccctaacccta

accctaaccctaaccctaaccctaaccct

aaccctaaccctaaccctaaccctaaccc

taaccctaaccctaaccctaaccctaacc

Ctaaccctaaccctaaccctaaccctaac

Cctaaccctaaccctaaccctaaccctaa

Ccctaaccctaaccctaaccctaacccta

Accctaaccctaaccctaaccctaaccc

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by
IEEE, 2017.” [21].

Table 4. The longest DNA maximal repeat patterns (Length = 463 bp) appearing in both humans and viruses.

Figure 9. BLAST: “Homo sapiens chromosome 5” versus “human herpesvirus 6B”; “Reproduced with permission from
International Conference on BioInformatics and BioEngineering (BIBE); published by IEEE, 2017” [21].
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1st, the 6th, and the11th, for example, have the similar regular expression as “(AACCCT)n”,
“(CTAACC)n,” and “(TAACCC)n”, respectively, and all of them appear in human chromo-
somes “1,” “5,” “10” and “12”; all of these three repeats appear in these viruses, “Cyprinid
herpesvirus 1,” “Falconid herpesvirus 1,” “Gallid herpesvirus 2,” “Human herpesvirus
6A,” “Human herpesvirus 6B,” and “Equid herpesvirus 3.” It is very interesting to investi-
gate the relationship between these human chromosomes and those viruses for further
research. On the other hand, from the biological viewpoint, furthermore, (AACCCT)n,
(CCCTAA)n, and (CTAACC)n may comprise the same maximal repeat pattern with differ-
ent repeat frame; (GGGTTA)n, and (AGGGTT)n can also comprise the same maximal repeat
pattern in complementary sequence. Moreover, the (GGGTTA)n is expected to be targeted
by cisplatin [36].

4.6. Phenotypes: “Group I(dsDNS)” in Baltimore virus classification

It is observed that all of these viruses in Table 5 belong to the “Group I(dsDNS)” of Baltimore
classification [37], as shown in Table 6, and most of them are from the family “Herpesviridae”
and order “Herpesvirales.” Indeed, it is very interesting and attractive to have all the viruses
compared with human whole genome and to inspect these co-occurrences of repeats for virus
prevention from the genomic point of view in the future.

Figure 10. One of two aligned patterns (8249–8711 bp) in Figure 9 “Reproduced with permission from International
Conference on BioInformatics and BioEngineering (BIBE); published by IEEE, 2017” [41].
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1st, the 6th, and the11th, for example, have the similar regular expression as “(AACCCT)n”,
“(CTAACC)n,” and “(TAACCC)n”, respectively, and all of them appear in human chromo-
somes “1,” “5,” “10” and “12”; all of these three repeats appear in these viruses, “Cyprinid
herpesvirus 1,” “Falconid herpesvirus 1,” “Gallid herpesvirus 2,” “Human herpesvirus
6A,” “Human herpesvirus 6B,” and “Equid herpesvirus 3.” It is very interesting to investi-
gate the relationship between these human chromosomes and those viruses for further
research. On the other hand, from the biological viewpoint, furthermore, (AACCCT)n,
(CCCTAA)n, and (CTAACC)n may comprise the same maximal repeat pattern with differ-
ent repeat frame; (GGGTTA)n, and (AGGGTT)n can also comprise the same maximal repeat
pattern in complementary sequence. Moreover, the (GGGTTA)n is expected to be targeted
by cisplatin [36].

4.6. Phenotypes: “Group I(dsDNS)” in Baltimore virus classification

It is observed that all of these viruses in Table 5 belong to the “Group I(dsDNS)” of Baltimore
classification [37], as shown in Table 6, and most of them are from the family “Herpesviridae”
and order “Herpesvirales.” Indeed, it is very interesting and attractive to have all the viruses
compared with human whole genome and to inspect these co-occurrences of repeats for virus
prevention from the genomic point of view in the future.

Figure 10. One of two aligned patterns (8249–8711 bp) in Figure 9 “Reproduced with permission from International
Conference on BioInformatics and BioEngineering (BIBE); published by IEEE, 2017” [41].
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5. Conclusions and future works

Except considering the phenotypes that result from the epigenetics [38], it is believed that
some of the phenotypes of creatures (or organisms) are determined by their genotypes
as they are born in the beginning. This chapter proposes a novel approach to mine for genetic
markers via comparing class frequency distributions of maximal repeats extracted from
tagged genomic sequences of creatures, where the classes are derived from the tags given
by domain experts. Once domain experts can divide the creatures into disjoint classes
as precisely as possible according to their features (phenotypes), then they can adopt the
scalable approach developed in [22] to extract the maximal repeats and compute class
frequency distributions of these repeats via comparing the whole genomic sequences of
these creatures. The repeats or the combination of some repeats that are with extremely
biased class frequency distribution can be seen as class markers (genotypes) and can provide
clues to biologists to analyze the relationship among these class markers (genotypes) and
their corresponding features (phenotypes).

Due to the availability of cloud computing with flexible infrastructure, nowadays, it becomes
possible to compute class frequency distributions of maximal repeats from a huge amount of
tagged whole genomic sequences of many creatures across species via the scalable maximal
repeat extraction approach [22] with Hadoop MapReduce programming model. The function
mentioned in this chapter is somewhat like “Archimedes’ Law of the Lever,” as shown in

Viruses Class ID The International Committee on Taxonomy of Viruses
(ICTV)

Baltimore
classification

Genus Family Order

Orgvia pseudotsugata MNPV C5 Alphabaculovirus Baculoviridae N Group I(dsDNA)

Gryllus bimaculatus nudiviras C14 Alphanudivirus Nudiviridae N Group I(dsDNA)

Cyprinid herpesvirus 1 C149 Cyprinivirus Alloherpesviridae Herpesvirales Group I (dsDNA)

Rabbit fibroma virys C284 Leporipoxvirus Poxviridae N Group I (dsDNA)

Falconid herpesvirus 1 C305 Mardivirus Herpesviridae Herpesvirales Group I(dsDNA)

Gallid herpesvirus 2 C305 Mardivirus Herpesviridae Herpesvirales Group I(dsDNA)

Meleagrid herpesvirus 1 C305 Mardivirus Herpesviridae Herpesvirales Group I(dsDNA)

Taterapox virus C357 Orthopoxvirus Poxviridae N Group I(dsDNA)

Human herpesvirus 6A C442 Roseolovirus Herpesviridae Herpesvirales Group I(dsDNA)

Human herpesvirus 6B C442 Roseolovirus Herpesviridae Herpesvirales Group I(dsDNA)

Human herpesvirus 7 C442 Roseolovirus Herpesviridae Herpesvirales Group I(dsDNA)

Equid herpesvirus 3 C541 Varicellovirus Herpesviridae Herpesvirales Group I(dsDNA)

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by
IEEE, 2017.” [21].

Table 6. The taxonomy of 12 viruses selected in Table 5.
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5. Conclusions and future works

Except considering the phenotypes that result from the epigenetics [38], it is believed that
some of the phenotypes of creatures (or organisms) are determined by their genotypes
as they are born in the beginning. This chapter proposes a novel approach to mine for genetic
markers via comparing class frequency distributions of maximal repeats extracted from
tagged genomic sequences of creatures, where the classes are derived from the tags given
by domain experts. Once domain experts can divide the creatures into disjoint classes
as precisely as possible according to their features (phenotypes), then they can adopt the
scalable approach developed in [22] to extract the maximal repeats and compute class
frequency distributions of these repeats via comparing the whole genomic sequences of
these creatures. The repeats or the combination of some repeats that are with extremely
biased class frequency distribution can be seen as class markers (genotypes) and can provide
clues to biologists to analyze the relationship among these class markers (genotypes) and
their corresponding features (phenotypes).

Due to the availability of cloud computing with flexible infrastructure, nowadays, it becomes
possible to compute class frequency distributions of maximal repeats from a huge amount of
tagged whole genomic sequences of many creatures across species via the scalable maximal
repeat extraction approach [22] with Hadoop MapReduce programming model. The function
mentioned in this chapter is somewhat like “Archimedes’ Law of the Lever,” as shown in

Viruses Class ID The International Committee on Taxonomy of Viruses
(ICTV)

Baltimore
classification

Genus Family Order

Orgvia pseudotsugata MNPV C5 Alphabaculovirus Baculoviridae N Group I(dsDNA)

Gryllus bimaculatus nudiviras C14 Alphanudivirus Nudiviridae N Group I(dsDNA)

Cyprinid herpesvirus 1 C149 Cyprinivirus Alloherpesviridae Herpesvirales Group I (dsDNA)

Rabbit fibroma virys C284 Leporipoxvirus Poxviridae N Group I (dsDNA)

Falconid herpesvirus 1 C305 Mardivirus Herpesviridae Herpesvirales Group I(dsDNA)

Gallid herpesvirus 2 C305 Mardivirus Herpesviridae Herpesvirales Group I(dsDNA)

Meleagrid herpesvirus 1 C305 Mardivirus Herpesviridae Herpesvirales Group I(dsDNA)

Taterapox virus C357 Orthopoxvirus Poxviridae N Group I(dsDNA)

Human herpesvirus 6A C442 Roseolovirus Herpesviridae Herpesvirales Group I(dsDNA)

Human herpesvirus 6B C442 Roseolovirus Herpesviridae Herpesvirales Group I(dsDNA)

Human herpesvirus 7 C442 Roseolovirus Herpesviridae Herpesvirales Group I(dsDNA)

Equid herpesvirus 3 C541 Varicellovirus Herpesviridae Herpesvirales Group I(dsDNA)

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by
IEEE, 2017.” [21].

Table 6. The taxonomy of 12 viruses selected in Table 5.
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Figure 11, the Archimedes, an outstanding ancient Greek scientist, said that “Give me a place
to stand on, and I will move the Earth.” With scalable computing power and enough tagged
genomic sequences, in other words, a domain expert can figure out the relationship among
phenotypes and genotypes if the classes are properly and precisely defined. It is desired to
have further cooperation with domain experts, especially who have collected the whole
genomes of diverse organisms and desire to find or identify the relationship between genomic
signatures and the features they concern in the future.

From a practical point of view, it is inconvenient for general users to have experiments of
maximal repeat extraction by themselves in the beginning because there are a lot of
preprocessing works and need considerable hardware infrastructure to support such a big-
data computing. Furthermore, it might be a bottleneck or nightmare for general users, for
example, biologists, to implement Hadoop MapReduce programming as described in [22].
Therefore, it is highly desired if maximal repeat extraction can be provided in public cloud
services, such as Amazon Elastic Container Service (AWS ECS) [39], Google Cloud Platform
[40], and Azure Container Service (AKS) [41]. It is highly expected that one will develop novel
comparative genome with tagged genomic sequences and bring users with novel cloud ser-
vices of computing class frequency distribution of maximal repeats in the future.
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Abstract

Genomic structural variations (SVs) are genetic alterations that result in duplications, 
insertions, deletions, inversions, and translocations of segments of DNA covering 50 or 
more base pairs. By changing the organization of DNA, SVs can contribute to phenotypic 
variation or cause pathological consequences as neurobehavioral disorders, autoimmune 
diseases, obesity, and cancers. SVs were first examined using classic cytogenetic methods, 
revealing changes down to 3 Mb. Later techniques for SV detection were based on array 
comparative genome hybridization (aCGH) and single-nucleotide polymorphism (SNP) 
arrays. Next-generation sequencing (NGS) approaches enabled precise characterization 
of breakpoints of SVs of various types and sizes at a genome-wide scale. Dissecting SVs 
from NGS presents substantial challenge due to the relatively short sequence reads and 
the large volume of the data. Benign variants and reference errors in the genome present 
another dimension of problem complexity. Even though a wide range of tools is available, 
the usage of SV callers in routine molecular diagnostic is still limited. SV detection algo-
rithms relay on different properties of the underlying data and vary in accuracy and sensi-
tivity; therefore, SV detection process usually utilizes multiple variant callers. This chapter 
summarizes strengths and limitations of different tools in effective NGS SV calling.

Keywords: bioinformatics, genome organization, next-generation sequencing, structural 
variation, variant calling

1. Introduction

First, efforts in exploring genetic variations were focused on single-nucleotide polymor-
phisms (SNPs) which were initially considered the main source of genetic and phenotypic 
human variation [1], while larger variations were thought to be rare events. However, in 2004 
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two studies [2, 3] revealed an unexpectedly large amount of large-scale variations (several kb 
to hundreds of kb) in the human genome. The evidence for the prevalence of structural vari-
ants (SVs), such as deletions, duplications, and inversions, began to accumulate. By changing 
the organization of the DNA, SVs can contribute to the phenotypic differences among healthy 
individuals or cause severe phenotypic consequences. SVs are involved in a wide range of 
diseases and conditions, such as autism spectrum disorders [4–6], schizophrenia [7], Crohn’s 
disease [8], rheumatoid arthritis [9], lupus erythematosus [10], psoriasis [11], obesity [12], 
and cancers [13, 14]. Among the different classes of genetic variations, SVs have remained 
the most challenging to detect and characterize. SVs were examined since the identification 
of chromosomal abnormalities using classic cytogenetic methods, revealing changes down to 
3 Mb. Later techniques for SVs detection are based on array comparative genome hybridiza-
tion (aCGH) and single-nucleotide polymorphism arrays. Next-generation sequencing (NGS) 
has enabled methods for precise definition of breakpoints of SVs of different sizes and types. 
Characterization of SVs from high-throughput sequencing data presents complex task due to 
the volume of the data and short sequence reads.

2. Structural variations

Genomic structural variations (SVs) are genetic alterations that result in amplifications, 
losses, inversions, and translocations of segments of DNA greater than 50 bp. SVs are a 
normal part of genomic variation but can also cause disorders. Standard detection methods 
include chromosome banding, fluorescent in situ hybridization (FISH), and array com-
parative genome hybridization (aCGH) that is very useful to detect copy number varia-
tions (CNVs) but cannot detect copy-neutral SVs (inversions, balanced translocations) [15]. 
Recent methods include employment of NGS to identify SVs, which are not detectable by 
cytogenetic methods.

Chromosomal rearrangements can occur on a single chromosome (interchromosomal SVs) 
or can involve exchange of genomic DNA between chromosomes (intrachromosomal SVs). 
Intrachromosomal SVs are a product of one or more double-strand breaks, which may result 
in deletions, inversions, and duplications. Deletions and duplications are copy number varia-
tions and are easily detected by employing NGS data (read coverage method), whereas inver-
sions are copy number-neutral. Intrachromosomal translocation is the exchange of genetic 
material between two non-homologous chromosomes. In a reciprocal translocation, two 
broken-off pieces of two non-homologous chromosomes are exchanged, usually producing 
two balanced derivative chromosomes. Unless breakpoints disrupt important developmental 
genes, balanced translocations do not affect phenotype [15]. However, during gamete forma-
tion such chromosomes may segregate in unbalanced manner or unbalanced translocations 
may occur de novo and lead to monosomy and trisomy of different chromosome segments 
[16], which account for approximately 1% of developmental delay and intellectual disability 
cases in human [17–19]. Robertsonian translocations are a type of SVs resulting from chro-
mosome end breaks near centromeric regions of two acrocentric chromosomes and their 
reciprocal exchange, which results in one large metacentric chromosome and one very small 
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chromosome that is usually lost without phenotype effect. In case three or more chromo-
somal breakpoints are involved, we speak of complex chromosome rearrangements, which 
may result in balanced or unbalanced state [20].

3. Next-generation sequencing

The first commercially available next-generation sequencing platform was released in 2005 
[21]. The technology has been continuously upgraded and has fundamentally changed the 
field of genetics studies. Next-generation sequencing (NGS), also known as high-through-
put sequencing, parallelizes the sequencing process and produces millions of short reads 
(50–400 bp each) in a single experimental run. It has contributed to rapid progress in single-
nucleotide polymorphisms detection. Due to the nature of the NGS short-read sequences, 
the category of longer variants remained poorly characterized. Variants in range 10–100 kb 
are small for detection by cytogenetic methods [22] but too large for reliable detection with 
short-read sequencing. SVs affect more bases than single-nucleotide polymorphisms [23] and 
present an important class of genetic variation. Moreover, many SVs have been shown to play 
relevant roles in phenotypic variability and disease [24].

3.1. NGS data analysis pipeline

Once the samples are sequenced, the NGS data analysis becomes the task in bioinformatics 
field. The computational analysis and interpretation of the data generated remains one of 
the major bottlenecks in NGS projects. The basic steps for analyzing NGS data are quality 
assessment, reads alignment (mapping) to a reference sequence, and variant identification. 
The second stage of analysis comprises variant analysis, visualization, and interpretation 
of the variants in relation to phenotypes. Commercial packages such as CLCBio Genomic 
Workbench, CASAVA, and SeqNext often provide all-in-one solutions, while academic pipe-
lines typically consist of sequential tools for specific steps in the analysis.

The output from the sequencing machines are reads, which are usually stored in text-based 
FASTQ files. The data obtained from NGS are compromised by sequence artifacts, including 
read errors, poor-quality reads, and primer contamination [25]. To avoid erroneous conclu-
sions, the artifacts should be removed. A number of bioinformatics tools for sequencing qual-
ity assessment, such as FastQC, FASTX-Toolkit, PRINSEQ [26], TagDust [27], and NGS QC 
Toolkit [28] are designed. Next step in NGS data analysis is alignment of short reads to corre-
sponding positions on a reference sequence. A variety of algorithms have been developed for 
this task. Representative read mappers are Bowtie2 [29], BWA [30], and Novoalign. The typical 
output from the read mapper is BAM file which contains information about qualities and posi-
tions of aligned sequences. Variant analysis consists of genotyping, variant calling, annotation, 
and prioritization. Genomic variants, such as SNPs and short-scale insertions and deletions 
are identified by variant callers. Widely used tools for variant calling are Genome Analysis 
Tool Kit HaplotypeCaller (GATK-HC) [14], Samtools mpileup [31], Freebayes and Torrent 
Variant Caller (TVC). Variant callers take in a BAM file and return a list of variants. To annotate  
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variants, SnpEff [32], VariantAnnotator from the GATK [33], and ANOVAR [34] tools are used. 
To systematically filter, evaluate, and prioritize thousands of variants VAAST 2.0 [35], VarSifer 
[36], KGGseq [37], and commercial software Ingenuity Variant Analysis are available.

3.2. Single-read and paired-end sequencing

Initially, NGS technologies produced extremely short reads (25–36 bp), sequenced from only 
one end of the DNA (single-read sequencing) [38]. As technology developed, read lengths 
consistently increased and sequencers have been improved to sequence both ends of a frag-
ment with or without a non-sequenced stretch in between (paired-end sequencing). This not 
only has the benefit from doubling the number of reads but also improves accuracy and offers 
additional information for structural variants detection.

The reads obtained from paired-end sequencing (R1 and R2) come from the same fragment of 
DNA. The length of the fragment is usually longer than the length of reads (R1 + R2), so there 
is a gap between them (Figure 1). Although the sequence of the fragment between reads is not 
known, the knowledge that R1 and R2 are next to each other on the known distance and have 
opposite orientation is useful.

4. Overview of the structural variation detection algorithms

Using NGS technologies, large volume of sequence data at an unprecedented speed and con-
stantly reducing cost is produced. Consequently, the computational tools for analysis of mas-
sive amounts of genomic data are in demand. There is a growing awareness that structural 
variations represent a significant contribution to genotypic and phenotypic diversity [39]. 
However, the accurate detection of structural variants from NGS is a daunting task [40]. A 
number of algorithms have been proposed to address the issue of structural variants calling 
from NGS data [41]. SV detection algorithms rely on different properties of the underlying 
data and vary in accuracy and sensitivity. The algorithms follow one or a combination of 
strategies, which could be classified into categories: (1) read depth (RD), (2) paired-end (PE), 
(3) split reads (SR), and (4) de novo assembly (AS). The most suitable method for SV detection 
depends on the size and variant type as well as characteristics of the sequencing data [42]. SV 
detection process usually utilizes multiple variant callers.

Figure 1. Paired-end sequencing; the inner distance between paired reads (R1 and R2) is known.
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4.1. Algorithms based on read depth

Read depth (RD) algorithms are able to identify CNVs. RD-based algorithms can accurately 
predict absolute copy-numbers [43] but are unable to detect copy-number neutral variants 
such as inversions and balanced translocations. The breakpoint identification resolution is 
low and depends on the sequence coverage.

RD algorithms divide the reference sequence in intervals and calculate the number of reads 
aligned within them. The read depth per interval should follow a normal distribution centered 
at the average read depth for the entire reference sequence. When the read depth of contiguous 
intervals significantly differs from the average observed, the CNV is detected (Figure 2). Deleted 
regions show reduced read depth when compared to entire reference sequence (Figure 3).

Figure 2. An example of CNV including gene KIT with flanking regions in four pig genomes. The read coverage is higher 
in the region of the CNV. The figure was made using Golden Helix GenomeBrowse.
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4.2. Paired-end approaches

Paired-end sequencing data allow detection of many types of SVs. Paired-end (PE) SV calling 
approaches detect deviations from expected library insert size (donor reads map at inconsis-
tent distances). When a pair of reads does not overlap with any SV, the distance between them 
is the same as the size of the library insert and reads have correct orientation (concordant 
pairs). When the read pair overlaps a SV, the mapping distance of paired reads differs from 
the library insert size and their orientation may be inverted. Discordantly mapped paired-
reads can be (1) further apart than expected, (2) closer together than expected, (3) in inverted 
orientation, (4) in incorrect order, (5) on different chromosomes. Clusters of read pairs aligned 
to the same genomic regions with the distance shorter than expected can be explained by 
insertion in the sequenced samples (donor). Larger distances between reads than expected 
can be explained by deletion in the sample (donor) (Figure 4). The resolution of the break-
points detected by this approach depends on the library’s insert size and on the read cover-
age. Insertions larger than the library insert size cannot be detected.

4.3. Algorithms based on split-reads

Split-read (SR) algorithm can detect SVs with a single base-pair resolution. Split reads contain 
the breakpoint of the structural variant. Their alignments to the reference genome are split 

Figure 3. An example of deletion within upstream and downstream regions of LEPR locus in five pig genomes. The read 
coverage is low in the region of deletion. The figure was made using Golden Helix GenomeBrowse.
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into two parts (Figure 5). Parts of a read are independently aligned to the reference genome, 
so the reads should be long enough to be aligned uniquely. Therefore, algorithms based on 
split-reads are feasible only when the sequencing reads are sufficiently long.

4.4. Algorithms based on de novo assembly

Algorithms based on de novo assembly (AS) are able to detect all forms of structural variation. 
De novo assembly refers to reassembling the original sequence from which the fragments 
were sampled. When the sequenced genome is assembled, it is compared to the reference 
genome to identify SVs. The method enables discovery of novel sequence fragments (inser-
tions). The approach is time-consuming, costly, and prone to assembly errors. In terms of 
computational efficiency and detection power, targeted SV assembly is more effective. They 
dissect a problem into a set of local assembly problems that can be more effectively solved.

Figure 4. Examples of identification of deletion, insertion, and inversion using paired-end approach: (A) paired-reads 
are closer together than expected (deletion), (B) paired-reads are further apart than expected (insertion), (C) paired-reads 
are in inverted orientation (inversion).
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Figure 5. An example of deletion in an individual genome detected by split-read method.

Tool SV type Strategy Released Reference

PEMer Indels, inversions paired-reads 2009 Feb [49]

VariationHunter Transposon insertions paired-reads 2010 Jun [50]

SegSeq CNVs read-depth 2009 Jan [51]

BreakDancer Indels, inversions, and 
translocations

paired-reads 2009 Jul [52]

Pindel Breakpoints of large deletions and 
medium-sized insertions

split-read 2009 Nov [53]

VariationHunter Transposon insertions paired-reads 2010 Jun [50]

Cortex simple and complex SVs de novo assembly 2011 Apr [54]

CNVnator CNVs read-depth 2011 Jun [55]

GASVPro Indels, inversions, 
interchromosomal translocations

read-depth, paired-end 2012 Mar [56]

SVseq2 Indels with exact breakpoints split-read, paired-end 2012 Apr [57]

Breakpointer Indels, mobile insertions and non-
homologous recombinations

read-depth, split-read, 2012 Apr [58]

DELLY Copy-number variable deletions, 
tandem duplications, inversions, 
reciprocal translocations

split-read, paired-end 2012 Sep [59]

SVM2 Short insertions and deletions paired-end, machine 
learning

2012 Oct [60]

PeSV-Fisher Deletions, gains, intra- and 
interchromosomal translocations, 
and inversions

paired-reads, read-depth 2013 May [61]

LUMPY Deletions, inversions, 
tandem duplications, and 
interchromosomal translocations

split-read, paired-end 2014 Jun [62]

Bioinformatics in the Era of Post Genomics and Big Data100

4.5. Hybrid-approaches for SV calling

SV detection algorithms rely on different properties of the underlying data and vary in accu-
racy and sensitivity. One single method cannot detect complete range of SVs, each is limited 
to specific type of SVs. Combined approaches can overcome limitations of a single method 
[44]. Two directions can be taken, combining strategies within one caller or combining SV call-
ers [45]. A class of SV detection methods bases on machine learning. Variations are identified 
by various methods and are filtered against empirically derived training set data.

4.6. Bioinformatics tools for structural variation calling

A number of algorithms have been proposed to address the issue of structural variants calling 
from NGS data, but the structural variation calling remains challenging. The complete range of 
SVs cannot be discovered using one single method. The process of SV calling usually utilizes mul-
tiple variant callers to overcome limitations of individual approaches. Knowing advantages and 
drawbacks of various tools (Table 1) is important to make proper decisions when designing NGS 
data analysis pipelines. Different callers yield lists of identified SVs with limited overlap. Pipelines 
SVMerge [46], HugeSeq [47], iSVP [48], and IntanSV that integrate different SV callers, such as 
BreakDancer, CNVnator, SVseq2, Pindel, and DELLY and merge their results were published.

5. Conclusions

Using next-generation sequencing technologies, large volume of sequence data is produced 
with an unprecedented speed and constantly reducing cost. It allowed rapid progress in  

Tool SV type Strategy Released Reference

Gustaf Deletions, inversions, dispersed 
duplications and translocations of 
≥30 bp

split-read 2014 Dec [63]

MetaSV Indels, insertions, inversions, 
translocations, and CNVs

integration of SV callers 
(BreakSeq, Breakdancer, 
Pindel, CNVnator), local 
assembly

2015 Aug [64]

Manta Medium-sized indels, large 
insertions

split-read, paired-end 2016 Apr [65]

SRBreak CNV breakpoints read-depth, split-read 2016 Sep [66]

Seeksv Deletion, insertion, inversion and 
interchromosomal transfer

split-read, paired-end, 
read-depth fragments with 
two ends unmapped

2017 Jan [67]

SVachra Large insertions-deletions, 
inversions, inter and 
intrachromosomal translocations

paired-end 2017 Oct [68]

Table 1. The list of tools for different types of SV calling.
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Figure 5. An example of deletion in an individual genome detected by split-read method.
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single-nucleotide polymorphisms detection. The awareness that structural variations rep-
resent a significant source of genotypic and phenotypic variation is permanently growing. 
However, the accurate detection of structural variants from NGS data is a daunting task. 
Relatively short reads, often repetitive character of SV, large amount of data, and large num-
ber of benign variants in complex genomes represent a major challenge for bioinformatics 
analysis of SVs. A number of algorithms have been proposed to address the issue of structural 
variants calling from NGS data. SV detection algorithms rely on different properties of the 
underlying data and vary in accuracy and sensitivity. SV detection process usually utilizes 
multiple variant callers. However, knowing advantages, drawbacks, and properties of differ-
ent tools is inevitably required for proper decisions when designing NGS data analysis pipe-
lines from publicly available tools. This chapter summarizes basic concepts of bioinformatics 
analysis of SV and introduces some rules for their assessment.
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single-nucleotide polymorphisms detection. The awareness that structural variations rep-
resent a significant source of genotypic and phenotypic variation is permanently growing. 
However, the accurate detection of structural variants from NGS data is a daunting task. 
Relatively short reads, often repetitive character of SV, large amount of data, and large num-
ber of benign variants in complex genomes represent a major challenge for bioinformatics 
analysis of SVs. A number of algorithms have been proposed to address the issue of structural 
variants calling from NGS data. SV detection algorithms rely on different properties of the 
underlying data and vary in accuracy and sensitivity. SV detection process usually utilizes 
multiple variant callers. However, knowing advantages, drawbacks, and properties of differ-
ent tools is inevitably required for proper decisions when designing NGS data analysis pipe-
lines from publicly available tools. This chapter summarizes basic concepts of bioinformatics 
analysis of SV and introduces some rules for their assessment.
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Abstract

Sequence comparison is one of the most fundamental tasks in bioinformatics. For biolog-
ical sequence comparison, alignment is the most profitable method when the sequence
lengths are not so large. However, as the time complexity of the alignment is the square
order of the sequence length, the alignment requires a large amount of computational time
for comparison of sequences of large size. Therefore, so-called alignment-free sequence
comparison methods are needed for comparison between such as whole genome
sequences in practical time. In this chapter, we reviewed the graphical representation of
biological sequences, which is one of the major alignment-free sequence comparison
methods. The notable effects of weighting during the course of the graphical representa-
tion introduced first by the author and co-workers were also mentioned.

Keywords: alignment-free, amino acid sequence, binary image, DNA sequence,
mitochondria, phylogeny

1. Introduction

Comparison between biological sequences is one of the most fundamental tasks in the area
of bioinformatics. For relatively short sequences, such as nucleotide sequences of genes or
amino acid sequences of proteins, alignment is the most profitable method for the sequence
comparison. However, as the dependency of the computational time of the alignment on the
sequence length N is O(N2), the alignment is hard to be applied to comparison between
sequences of large size, such as whole genome sequences. Therefore, the development of
alignment-free methods is required to analyze the similarities between the sequences of large
size in practical time. One of the most actively studied methods of the alignment-free sequence
comparison is graphical representation [1, 2]. In addition to overcoming the time-consuming
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problem mentioned above, the graphical representation has the advantage that the similarities
between sequences can be easily noticed visually.

Since the seminal paper by Hamori and Ruskin [3] was published, various kinds of sequence
comparison methods based on the graphical representation have been proposed by many
researchers. The basic procedure of the graphical representation is outlined as follows: first,
each character in a biological sequence, which is expressed by the four-letter alphabet for
nucleotide sequences and the 20-letter alphabet for amino acid sequences, is expressed by
individual vectors in a certain dimensional space; next, the vectors are connected successively
in a head-to-tail fashion, drawing a curve, or a graph, in the expression space; and last, if
necessary, the distances between the graphs are calculated based on the predefined distance
measures.

In this chapter, we briefly review the graphical representation methods for biological sequence
comparison. In addition, we introduce our work recently published, in which weighting
during the course of the graphical representation shows the notable effects.

2. Variations of graphical representations

The graphical representation methods are classified into some classes according to the target
sequences and the dimension of the representation space. The target sequences of the graphical
representation are amino acid sequences of proteins and nucleotide sequences of DNA (or
RNA), including specific genes, mitochondrial genomes, and others. Table 1 summarizes the
classification of the graphical representation methods published so far.

2.1. Graphical representation of DNA sequences

Biological sequences stored in data archives are expressed by the four-letter alphabet for
nucleotide sequences of DNA and the 20-letter alphabet for amino acid sequences of proteins.

Target sequence Dimension of expression space Work

DNA sequences

Specific genes 2D [4–22]

3D ≤ [23–36]

Mitochondrial genomes 2D [37–41]

3D ≤ [42]

Others 3D ≤ [3, 43]

Proteins

2D [44–49]

3D ≤ [50–53]

Table 1. Classification of graphical representation methods.

Bioinformatics in the Era of Post Genomics and Big Data110

To represent the biological sequences by graphs, it is necessary to express each character
composing the sequences in numerical form.

The most popular strategy for the numerical expression is assigning vectors to respective
characters in the alphabet. As for nucleotide sequences of DNA, the individual vectors of two,
three, or higher dimension are assigned to four types of bases, A, T, G, and C.

2.1.1. Two-dimensional representation

Figure 1 is the two-dimensional vector assignment utilized by Gates [4]. Although many
variations of the assignments are given according to the layout of the four bases, the number
of the independent assignments is reduced to 3!/2 = 3, when the assignments that are
transformed to each other by rotation on the xy-plane or inversion with respect to the x- or y-
axis are assumed to be equivalent. The assignments of this type including the variations with
some modifications are utilized in Refs. [5, 6, 10, 16, 20, 21, 40, 41].

By connecting the vectors successively in a head-to-tail fashion according to each base
appearing in a nucleotide sequence, a graphical representation is generated. Figure 2 shows,
as an example, the graphical representation of sequence “TGAGTTC” generated by Gates’
assignment.

The assignment of Figure 1 may draw circuits in the graphical representation, leading to the
loss of information that the original biological sequence has. To get rid of the degeneracy, Yau
[9] introduced the assignment shown in Figure 3, which makes no circuit in the graphical
representation; because the x-components of the vectors have all positive values, no backward
motion along the x-axis exists in the graphical representation. For comparison, Figure 4 illus-
trates the graphical representations of the first exon of the human β-globin gene represented by
Gates’ vector assignment (Figure 1) and Yau’s vector assignment (Figure 3). There are many
circuits in the graph by Gates’ assignment; on the other hand, there is no circuit in the graph by

Figure 1. Two-dimensional vector assignment to bases utilized by Gates [4].
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Yau’s assignment. The assignments of Yau’s type (including the variations with some modifi-
cations) are utilized in Refs. [9, 12, 15, 18, 19, 37–39].

Some researchers used another approach; they directly mapped bases on the xy-plane without
vector assignment. Randić et al. plotted the ith base of a DNA sequence on the xy-plane at (i,0),
(i,1), (i,2), and (i,3) for bases C, G, T, and A, respectively [7]. By connecting the plots, a zigzag
curve is given. Figure 5 demonstrates the zigzag curve for sequence “ATGGTGCACC” given

Figure 2. Graphical representation of sequence “TGAGTTC” generated by Gates’ assignment (Figure 1).

Figure 3. Two-dimensional vector assignment to bases utilized by Yau [9].
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by Randić’s approach. Similar to the graphical representation given by Yau’s vector assign-
ment (Figure 4(b)), the zigzag curve has no circuits. The approaches of this kind (including the
variations with some modifications) are utilized in Refs. [8, 11, 13, 14, 17, 22].

2.1.2. Three-dimensional representation

Hamori and Ruskin [3] used a three-dimensional vector assignment to bases (Figure 6). Gates’
approach (Figure 1) [4] is a simplified version of this assignment. However, unlike Gates’
approach, Hamori’s assignment does not make any circuit in the resultant curve (called H-
curve), because the z-coordinate of the curve decreases monotonically with the positions of the
bases in the original sequence. The assignments of this type (including the variations with
some modifications) are utilized in Refs. [26, 27, 29, 31–36].

Zhang and Zhang [43] used another three-dimensional vector assignment shown in Figure 7.
The resultant curve, called Z-curve, may have circuits therein like the curves generated by
Gates’ vector assignment (Figure 1). The assignments of this type (including the variations
with some modifications) are utilized in Refs. [24, 42].

Figure 4. Graphical representations of the first exon of the human β-globin gene (GenBank: AF527577) represented by (a)
Gates’ vector assignment (Figure 1) and (b) Yau’s vector assignment (Figure 3).

Figure 5. Zigzag curve for sequence “ATGGTGCACC” given by Randić’s approach [7].
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2.1.3. Higher than three dimensions

The graphical representations in the space of higher than three dimensions cannot be visual-
ized directly. Instead of direct visualization, they are expressed abstractly or projected on some
spaces of lower dimensions. The approaches of this type (including the variations with some
modifications) are utilized in Refs. [25, 30, 28].

Figure 6. Three-dimensional vector assignment to four bases utilized by Hamori [3].

Figure 7. Three-dimensional vector assignment to four bases utilized by Zhang and Zhang [43].

Bioinformatics in the Era of Post Genomics and Big Data114

2.2. Graphical representation of proteins

A general strategy for graphical representation of protein sequences is common to that for
DNA sequences, namely, numerical expression of characters followed by mapping on certain
dimensional spaces, except for the fact that the number of character types is 20 instead of 4 for
DNA sequences. A detailed review of graphical representation of protein sequences is given by
Randić et al. [54]. Here, we briefly mention the variations of the graphical representation
scheme of proteins.

Figure 8(a) and (b) presents two-dimensional vector assignments to 20 amino acids utilized by
Randić et al. [44] and Wen and Zhang [45], respectively. In Randić’s assignment, the 20 amino
acids (indicated by three-letter codes) are arranged uniformly on a unit circle in alphabetical
order. On the other hand, in Wen’s assignment, the horizontal and the vertical coordinates of
the vectors are given by pKa values of COOH and NH3

+ of the corresponding amino acid,
respectively. The assignments of Randić’s type and Wen’s type (including the variations with
some modifications) are utilized in Refs. [47] and [46, 48], respectively.

Yu and Huang [49] directly mapped 20 amino acids on a two-dimensional space and drew
zigzag curves similar to the curve for the case of DNA sequences given by Randić’s approach
(Figure 5) [7].

He et al. [52] extended Randić’s vector assignment (Figure 8(a)) to three dimensions by adding
one extra coordinate corresponding to the position of the amino acid in the original sequence,
with the modification of the arrangement of the 20 amino acids on the unit circle based on the
6-bit binary gray code assigned by the codon structure of the amino acids.

3. Numerical characterization of graphical representations

As well as the visual evaluation of the similarities between biological sequences through
their graphical representations, the quantitative estimation of the similarities also can be done
by the numerical characterization of the graphs. The general method of the quantitative

Figure 8. Two-dimensional vector assignments to 20 amino acids utilized by (a) Randić [44] and (b) Wen [45]. The 20
amino acids are indicated by three-letter codes and single-letter codes, respectively.
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estimation is to construct feature vectors based on the various kinds of characteristics of the
graphs and, then, to calculate the distances between the feature vectors based on some sort of
distance measures.

For the numerical characterization, there are two kinds of methods: geometrical methods and
graph-theoretical ones [2].

3.1. Geometrical characterization

The most simple method of the geometrical characterization was proposed by Raychaudhury
and Nandy [55], in which the graphs are numerically characterized by their geometrical
centers. Let xi; yi

� �
be the coordinate of the ith point of the graph, and then the geometrical

center μx;μy

� �
is computed by μx ¼ 1=N

PN
i¼1 xi and μy ¼ 1=N

PN
i¼1 yi, where N is the

total number of the points on the graph. The similarity/dissimilarity between the graphs
of sequences, A and B, is measured by the Euclidean distance between their geometrical
centers by

dAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μA
x � μB

x

� �2 þ μA
y � μB

y

� �2
r

, (1)

where A and B refer to the corresponding sequences.

A more accomplished geometrical characterization was proposed by Liao et al. [37], in which
they constructed a two-component feature vector based on the 2�2 covariance matrix CM
calculated from the two-dimensional graph by

CM ¼
1=N

PN
i¼1 xi � μx

� �2 1=N
PN

i¼1 xi � μx

� �
yi � μy

� �

1=N
PN

i¼1 yi � μy

� �
xi � μx

� �
1=N

PN
i¼1 yi � μy

� �2

0
B@

1
CA: (2)

The two-component vector is given by the two eigenvalues of CM, λ1, and λ2, as λ1;λ2ð Þ. The
similarity/dissimilarity between the graphs is measured by the Euclidean distance between the
end points of their feature vectors.

The approach proposed by Qi et al. [18] is another example of the geometrical characterization.
They constructed an eight-component feature vector from the averages of the y-coordinates of
the eight different patterns of the two-dimensional graphical representations. The similarity/
dissimilarity between the graphs is measured by the Euclidean distance between the end
points of their feature vectors.

3.2. Graph-theoretical characterization

The graph-theoretical characterization that is most widely used is the method based on the D/D
(distance/distance) matrix [56]. The off-diagonal (i, j) elements of the D/D matrix are defined as
the quotient of the Euclidean distance between the ith and the jth vertices of the graph and the
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graph-theoretical distance between the two vertices. The D/D matrix is symmetric, and all the
diagonal elements are zero by definition.

There are two variations of the D/D matrix. If the denominator (the graph-theoretical dis-
tance) is replaced by the sum of the geometrical lengths of the edges between the two
vertices, the D/D matrix is denoted as the L/L matrix; if the denominator is replaced by
the total number of the edges between the two vertices, the D/D matrix is denoted as the
M/M matrix.

As an example, Table 2 demonstrates the upper off-diagonal elements of the L/L matrix
calculated for the graph of sequence “TGAGTTC” in Figure 2.

The feature vectors are constructed from the leading eigenvalues of the D/D matrix, which are
the invariants of the matrix and can well describe the characteristics of the individual graphs.
For example, Randić et al. [8] used 12-component vectors given by the first leading eigenvalues
of the L/L matrices calculated from the 12 essentially different patterns of the graphical
representations, and Liao and Wang [13] used three-component vectors constructed by the
similar manner.

The similarity/dissimilarity between the sequences, A and B, is measured by the Euclidean
distance between the end points of the corresponding feature vectors by
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where λA
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i are the ith components of the K-component feature vectors of the sequence A
and B, respectively.
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Table 2. The upper off-diagonal elements of the L/L matrix for the graph in Figure 2.
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estimation is to construct feature vectors based on the various kinds of characteristics of the
graphs and, then, to calculate the distances between the feature vectors based on some sort of
distance measures.

For the numerical characterization, there are two kinds of methods: geometrical methods and
graph-theoretical ones [2].

3.1. Geometrical characterization

The most simple method of the geometrical characterization was proposed by Raychaudhury
and Nandy [55], in which the graphs are numerically characterized by their geometrical
centers. Let xi; yi

� �
be the coordinate of the ith point of the graph, and then the geometrical

center μx;μy

� �
is computed by μx ¼ 1=N

PN
i¼1 xi and μy ¼ 1=N

PN
i¼1 yi, where N is the

total number of the points on the graph. The similarity/dissimilarity between the graphs
of sequences, A and B, is measured by the Euclidean distance between their geometrical
centers by

dAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μA
x � μB

x

� �2 þ μA
y � μB

y

� �2
r

, (1)

where A and B refer to the corresponding sequences.

A more accomplished geometrical characterization was proposed by Liao et al. [37], in which
they constructed a two-component feature vector based on the 2�2 covariance matrix CM
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The two-component vector is given by the two eigenvalues of CM, λ1, and λ2, as λ1;λ2ð Þ. The
similarity/dissimilarity between the graphs is measured by the Euclidean distance between the
end points of their feature vectors.

The approach proposed by Qi et al. [18] is another example of the geometrical characterization.
They constructed an eight-component feature vector from the averages of the y-coordinates of
the eight different patterns of the two-dimensional graphical representations. The similarity/
dissimilarity between the graphs is measured by the Euclidean distance between the end
points of their feature vectors.

3.2. Graph-theoretical characterization

The graph-theoretical characterization that is most widely used is the method based on the D/D
(distance/distance) matrix [56]. The off-diagonal (i, j) elements of the D/D matrix are defined as
the quotient of the Euclidean distance between the ith and the jth vertices of the graph and the
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graph-theoretical distance between the two vertices. The D/D matrix is symmetric, and all the
diagonal elements are zero by definition.

There are two variations of the D/D matrix. If the denominator (the graph-theoretical dis-
tance) is replaced by the sum of the geometrical lengths of the edges between the two
vertices, the D/D matrix is denoted as the L/L matrix; if the denominator is replaced by
the total number of the edges between the two vertices, the D/D matrix is denoted as the
M/M matrix.

As an example, Table 2 demonstrates the upper off-diagonal elements of the L/L matrix
calculated for the graph of sequence “TGAGTTC” in Figure 2.

The feature vectors are constructed from the leading eigenvalues of the D/D matrix, which are
the invariants of the matrix and can well describe the characteristics of the individual graphs.
For example, Randić et al. [8] used 12-component vectors given by the first leading eigenvalues
of the L/L matrices calculated from the 12 essentially different patterns of the graphical
representations, and Liao and Wang [13] used three-component vectors constructed by the
similar manner.

The similarity/dissimilarity between the sequences, A and B, is measured by the Euclidean
distance between the end points of the corresponding feature vectors by
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i are the ith components of the K-component feature vectors of the sequence A
and B, respectively.
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4. Graphical representation based on binary images

The author and co-workers recently published the paper about a novel two-dimensional
graphical representation of DNA sequences based on binary images [41]. In this section, we
introduce our method and demonstrate the notable effects of weighting for the construction of
the graphical representations introduced first by the author and co-workers [40].

4.1. Vector assignment

We used the two-dimensional vector assignment to four bases shown in Figure 9, which is a
modified version of Gates’ assignment (Figure 1). We located both G and C on the same side so
that the GC-contents of the target sequences can be represented on the graphs; the graphs for
the sequences with high GC-contents tend to grow in the downward direction, although the
tendency is not rigid due to the weighting mentioned below.

4.2. Introducing weighting

In order to extract potential information conveyed by individual bases in DNA sequences, we
introduced weighting into the process of generating graphical representations; we calculated the
weighting factors based on a Markov chain model and multiplied them to the vectors assigned
to the bases. As the weighting factors, we used self-information, which is the amount of infor-
mation that we will receive when a certain event occurs [42]. The self-information is defined by

I Eð Þ ¼ � logP Eð Þ, (5)

Figure 9. Two-dimensional vector assignment to four bases utilized by Kobori and Mizuta [41].

Bioinformatics in the Era of Post Genomics and Big Data118

where P(E) is the probability that event E occurs. We employed the conditional probability
calculated based on the second-order Markov chain as P(E) concerning about codons, which are
triplets of bases in the coding regions of DNA sequences.

The conditional probability is calculated from the appearance frequencies of triplets of bases.
For example, the probability that base A occurs after a pair of bases TC is given by

P AjTCð Þ ¼ f TCAð Þ
f TCAð Þ þ f TCTð Þ þ f TCGð Þ þ f TCCð Þ , (6)

where f(S) is the number of appearances of triplet S. For the other combinations of bases, the
conditional probabilities are calculated by a similar manner. The numbers of appearances of
triplets were measured in all the DNA sequences analyzed.

Table 3 lists the weighting factors calculated with base 4 of the logarithm in Eq. (5) from 31
mammalian mitochondrial genomes. The weighting factor lower than 1.00 indicates that the
pair of bases on the row tends to be followed by the base on the column, and on the other
hand, the weighting factor higher than 1.00 indicates that, after the pair of bases on the row, the
base on the column is hard to appear.

Let us illustrate the procedure of the graphical representation with weighting factors by a
simple example. Figure 10(a) and (b) shows the graphical representations of sequence
“ACATATG” by Kobori’s vector assignment (Figure 9) without and with weighting,
respectively. The weighting is not applied to the first two bases, because the weighting
factors are not given for the first two bases by our weighting scheme. The weighting
factors for the subsequent bases A, T, A, T, and G are 0.83, 0.90, 0.84, 0.92, and 1.42,
respectively (see Table 3). The vectors for the bases are multiplied by the corresponding
weighting factors. As a result, the graphical representation in Figure 10(a) is modified as
shown in Figure 10(b).

We demonstrate the notable effects of the weighting on the graphical representations by the
real sequences. Figure 11 depicts the graphical representations of three mammalian mitochon-
drial genomes without weighting and with weighting. Comparing the graphs with weighting
(lower row) to the graphs without weighting (upper row), it can be recognized that the
characteristics of the graphs are emphasized by the weighting and the individual species can
be easily distinguished.

4.3. Generating binary images

A binary image is defined as a digitized image composed of the pixels with two possible
values (e.g., 0 and 1), which are typically assigned by white and black, respectively, on the
image. From the graphical representation, a binary image is generated in the following ways:
if the pixels include at least a portion of a curve of the graphical representation, they are
assigned 1; otherwise, they are assigned 0.
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4. Graphical representation based on binary images

The author and co-workers recently published the paper about a novel two-dimensional
graphical representation of DNA sequences based on binary images [41]. In this section, we
introduce our method and demonstrate the notable effects of weighting for the construction of
the graphical representations introduced first by the author and co-workers [40].

4.1. Vector assignment

We used the two-dimensional vector assignment to four bases shown in Figure 9, which is a
modified version of Gates’ assignment (Figure 1). We located both G and C on the same side so
that the GC-contents of the target sequences can be represented on the graphs; the graphs for
the sequences with high GC-contents tend to grow in the downward direction, although the
tendency is not rigid due to the weighting mentioned below.

4.2. Introducing weighting

In order to extract potential information conveyed by individual bases in DNA sequences, we
introduced weighting into the process of generating graphical representations; we calculated the
weighting factors based on a Markov chain model and multiplied them to the vectors assigned
to the bases. As the weighting factors, we used self-information, which is the amount of infor-
mation that we will receive when a certain event occurs [42]. The self-information is defined by

I Eð Þ ¼ � logP Eð Þ, (5)

Figure 9. Two-dimensional vector assignment to four bases utilized by Kobori and Mizuta [41].
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where P(E) is the probability that event E occurs. We employed the conditional probability
calculated based on the second-order Markov chain as P(E) concerning about codons, which are
triplets of bases in the coding regions of DNA sequences.

The conditional probability is calculated from the appearance frequencies of triplets of bases.
For example, the probability that base A occurs after a pair of bases TC is given by

P AjTCð Þ ¼ f TCAð Þ
f TCAð Þ þ f TCTð Þ þ f TCGð Þ þ f TCCð Þ , (6)

where f(S) is the number of appearances of triplet S. For the other combinations of bases, the
conditional probabilities are calculated by a similar manner. The numbers of appearances of
triplets were measured in all the DNA sequences analyzed.

Table 3 lists the weighting factors calculated with base 4 of the logarithm in Eq. (5) from 31
mammalian mitochondrial genomes. The weighting factor lower than 1.00 indicates that the
pair of bases on the row tends to be followed by the base on the column, and on the other
hand, the weighting factor higher than 1.00 indicates that, after the pair of bases on the row, the
base on the column is hard to appear.

Let us illustrate the procedure of the graphical representation with weighting factors by a
simple example. Figure 10(a) and (b) shows the graphical representations of sequence
“ACATATG” by Kobori’s vector assignment (Figure 9) without and with weighting,
respectively. The weighting is not applied to the first two bases, because the weighting
factors are not given for the first two bases by our weighting scheme. The weighting
factors for the subsequent bases A, T, A, T, and G are 0.83, 0.90, 0.84, 0.92, and 1.42,
respectively (see Table 3). The vectors for the bases are multiplied by the corresponding
weighting factors. As a result, the graphical representation in Figure 10(a) is modified as
shown in Figure 10(b).

We demonstrate the notable effects of the weighting on the graphical representations by the
real sequences. Figure 11 depicts the graphical representations of three mammalian mitochon-
drial genomes without weighting and with weighting. Comparing the graphs with weighting
(lower row) to the graphs without weighting (upper row), it can be recognized that the
characteristics of the graphs are emphasized by the weighting and the individual species can
be easily distinguished.

4.3. Generating binary images

A binary image is defined as a digitized image composed of the pixels with two possible
values (e.g., 0 and 1), which are typically assigned by white and black, respectively, on the
image. From the graphical representation, a binary image is generated in the following ways:
if the pixels include at least a portion of a curve of the graphical representation, they are
assigned 1; otherwise, they are assigned 0.
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4.4. Numerical characterization by local pattern histograms

In this work, each graph is characterized by the frequency distributions of local patterns that
appear on the graph. A local pattern is defined here as a small bitmap image of a certain size.
Because each pixel of a binary image takes two variations (0 and 1), the number of the local
patterns is 2n, where n is the number of the pixels of the local pattern. Local patterns of large
size are dominated by white pixels, while, on the other hand, those of small size do not have
enough variations to express the characteristics of the local area of a graph. For this study,
therefore, we chose 3�3 as the size of the local patterns (the number of the local patterns is
29=512). Figure 12 shows the examples of the local patterns of window size 3�3. Excluding the
pattern of which the pixels are all white, we construct a feature vector, or a local pattern
histogram, of dimension 511 for each graph from the appearance frequencies of the local
patterns on the graph.

Preceding pair of bases Third base

A T G C

AA 0.82 0.92 1.47 0.95

AT 0.84 0.90 1.42 0.97

AG 1.04 1.11 1.11 0.79

AC 0.83 0.88 1.64 0.90

TA 0.86 0.93 1.28 1.01

TT 0.77 0.97 1.51 0.94

TG 0.73 1.14 1.16 1.06

TC 0.77 0.93 1.69 0.91

GA 0.79 1.08 1.15 1.03

GT 0.67 1.04 1.36 1.11

GG 0.79 1.14 1.22 0.93

GC 0.85 0.93 1.97 0.75

CA 0.84 0.90 1.44 0.96

CT 0.68 1.02 1.51 1.02

CG 0.91 1.00 1.22 0.91

CC 0.90 0.82 1.79 0.85

The 31 mammalian species are (with the accession numbers in the parentheses), human (V00662), pygmy chimpanzee
(D38116), common chimpanzee (D38113), gorilla (D38114), gibbon (X99256), baboon (Y18001), Bornean orangutan
(D38115), African green monkey (AY863426), cat (U20753), dog (U96639), wolf (EU442884), pig (AJ002189), sheep
(AF010406), cow (V00654), buffalo (AY488491), tiger (EF551003), leopard (EF551002), Indian rhinoceros (X97336), white
rhinoceros (Y07726), harbor seal (X63726), gray seal (X72004), African elephant (AJ224821), Asiatic elephant (DQ316068),
black bear (DQ402478), brown bear (AF303110), polar bear (AF303111), rabbit (AJ001588), hedgehog (X88898), Norway
rat (X14848), vole (AF348082), and squirrel (AJ238588).

Table 3. Weighting factors calculated from 31 mammalian mitochondrial genomes.
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Figure 11. Graphical representations of mitochondrial genomes of three mammalian species without weighting (upper
row) and with weighting (lower row). The arrow heads of the vectors are eliminated.

Figure 10. Graphical representation of sequence “ACATATG” by Kobori’s vector assignment (Figure 9) without
weighting (a) and with weighting (b).
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4.4. Numerical characterization by local pattern histograms

In this work, each graph is characterized by the frequency distributions of local patterns that
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therefore, we chose 3�3 as the size of the local patterns (the number of the local patterns is
29=512). Figure 12 shows the examples of the local patterns of window size 3�3. Excluding the
pattern of which the pixels are all white, we construct a feature vector, or a local pattern
histogram, of dimension 511 for each graph from the appearance frequencies of the local
patterns on the graph.
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GC 0.85 0.93 1.97 0.75

CA 0.84 0.90 1.44 0.96

CT 0.68 1.02 1.51 1.02

CG 0.91 1.00 1.22 0.91

CC 0.90 0.82 1.79 0.85

The 31 mammalian species are (with the accession numbers in the parentheses), human (V00662), pygmy chimpanzee
(D38116), common chimpanzee (D38113), gorilla (D38114), gibbon (X99256), baboon (Y18001), Bornean orangutan
(D38115), African green monkey (AY863426), cat (U20753), dog (U96639), wolf (EU442884), pig (AJ002189), sheep
(AF010406), cow (V00654), buffalo (AY488491), tiger (EF551003), leopard (EF551002), Indian rhinoceros (X97336), white
rhinoceros (Y07726), harbor seal (X63726), gray seal (X72004), African elephant (AJ224821), Asiatic elephant (DQ316068),
black bear (DQ402478), brown bear (AF303110), polar bear (AF303111), rabbit (AJ001588), hedgehog (X88898), Norway
rat (X14848), vole (AF348082), and squirrel (AJ238588).

Table 3. Weighting factors calculated from 31 mammalian mitochondrial genomes.
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Figure 11. Graphical representations of mitochondrial genomes of three mammalian species without weighting (upper
row) and with weighting (lower row). The arrow heads of the vectors are eliminated.

Figure 10. Graphical representation of sequence “ACATATG” by Kobori’s vector assignment (Figure 9) without
weighting (a) and with weighting (b).
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4.5. Distance measures between local pattern histograms

There are several measures to estimate similarity/dissimilarity between two histograms. Here,
we briefly mention five frequently used methods. In the following formulas, K is the number of
the local patterns (K = 511), and pi and qi are the normalized appearance frequencies of the local

pattern of serial number i in histograms P and Q, respectively
PK

i¼1 pi ¼
PK

i¼1 qi ¼ 1
� �

.

4.5.1. Histogram intersection

Histogram intersection was proposed by Swain et al. [57] for color indexing of images, which is
defined as

HI P;Qð Þ ¼
XK

i¼1

min pi; qi
� �

: (7)

It ranges from 0 to 1, with 1 for P and Q being identical. It is converted to a distance by
DHI P;Qð Þ ¼ 1�HI P;Qð Þ.
4.5.2. Manhattan distance

Manhattan distance, also known as city block distance or L1-norm, is defined as

DMD P;Qð Þ ¼
XK

i¼1

∣pi � qi∣, (8)

which ranges from 0 to 2, with 0 for P and Q being identical.

4.5.3. Bhattacharyya distance

Bhattacharyya distance [58] is defined between two probability distributions from a divergence

BD P;Qð Þ ¼
XK

i¼1

ffiffiffiffiffiffiffi
piqi

p
, (9)

which ranges from 0 to 1, with 1 for P and Q being identical. The Bhattacharyya distance is
defined from the divergence by DBD P;Qð Þ ¼ �lnBD P;Qð Þ.

Figure 12. Examples of local patterns. The numbers below each local pattern are the serial numbers assigned to the local
patterns.
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4.5.4. Jensen-Shannon divergence

Jensen-Shannon divergence [59] is a symmetrized and smoothed version of Kullback–Leibler
divergence [60], which is defined as

DJS P;Qð Þ ¼ 1
2
KL P;Mð Þ þ 1

2
KL Q;Mð Þ, (10)

where M ¼ PþQð Þ=2 and KL �;Mð Þ is the Kullback-Leibler divergence calculated by

KL P;Mð Þ ¼
XK

i¼1

pi log 2
pi
mi

, (11)

KL Q;Mð Þ ¼
XK

i¼1

qi log 2
qi
mi

: (12)

Here, mi ¼ pi þ qi
� �

=2. Note that the local patterns having pi ¼ pi ¼ 0 are excluded from the
calculation. The Jensen-Shannon divergence ranges from 0 to 1, with 0 for P and Q being
identical.

4.5.5. Kendall’s rank correlation coefficient

Kendall’s rank correlation coefficient [61], also known as Kendall’s τ, is defined as

τ ¼ X� Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ Y þ r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ Y þ s

p , (13)

where X is the number of concordant i, j i > jð Þ pairs, which are the i, j pairs that satisfy

pi � pj
� �

qi � qj
� �

> 0; Y is the number of discordant pairs, which are the i,j pairs that satisfy

pi � pj
� �

qi � qj
� �

< 0; r is the number of one kind of tie pairs, which are the i,j pairs that satisfy

pi ¼ pj and qi 6¼ qj; and s is the number of the other kind of tie pairs, which are the i, j pairs that

satisfy pi 6¼ pj and qi ¼ qj. The i, j pairs that satisfy both pi ¼ pj and qi ¼ qj are excluded from

the calculation. Kendall’s τ lies between �1 and 1, with 1 for the rank orders of pis and qis
being completely in agreement with each other and with �1 for them being completely
reversal with each other. The Kendall’s τ is rescaled by

Dτ P;Qð Þ ¼ 1� τþ 1
2

, (14)

so that Dτ P;Qð Þ ranges from 0 to 1, with 0 for the rank orders of P and Q being identical.

4.6. Reconstruction of phylogenetic tree

Among the five distance measures mentioned above, histogram intersection and Manhattan
distance showed the best performance. Figure 13 shows the phylogenetic tree of 31 mamma-
lian species reconstructed by our method using Unweighted Pair Group Method with
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pattern of serial number i in histograms P and Q, respectively
PK

i¼1 pi ¼
PK

i¼1 qi ¼ 1
� �

.

4.5.1. Histogram intersection

Histogram intersection was proposed by Swain et al. [57] for color indexing of images, which is
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Manhattan distance, also known as city block distance or L1-norm, is defined as
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Figure 12. Examples of local patterns. The numbers below each local pattern are the serial numbers assigned to the local
patterns.
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4.5.4. Jensen-Shannon divergence

Jensen-Shannon divergence [59] is a symmetrized and smoothed version of Kullback–Leibler
divergence [60], which is defined as

DJS P;Qð Þ ¼ 1
2
KL P;Mð Þ þ 1

2
KL Q;Mð Þ, (10)

where M ¼ PþQð Þ=2 and KL �;Mð Þ is the Kullback-Leibler divergence calculated by

KL P;Mð Þ ¼
XK

i¼1

pi log 2
pi
mi

, (11)

KL Q;Mð Þ ¼
XK

i¼1

qi log 2
qi
mi

: (12)

Here, mi ¼ pi þ qi
� �

=2. Note that the local patterns having pi ¼ pi ¼ 0 are excluded from the
calculation. The Jensen-Shannon divergence ranges from 0 to 1, with 0 for P and Q being
identical.

4.5.5. Kendall’s rank correlation coefficient

Kendall’s rank correlation coefficient [61], also known as Kendall’s τ, is defined as

τ ¼ X� Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ Y þ r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ Y þ s

p , (13)

where X is the number of concordant i, j i > jð Þ pairs, which are the i, j pairs that satisfy

pi � pj
� �

qi � qj
� �

> 0; Y is the number of discordant pairs, which are the i,j pairs that satisfy

pi � pj
� �

qi � qj
� �

< 0; r is the number of one kind of tie pairs, which are the i,j pairs that satisfy

pi ¼ pj and qi 6¼ qj; and s is the number of the other kind of tie pairs, which are the i, j pairs that

satisfy pi 6¼ pj and qi ¼ qj. The i, j pairs that satisfy both pi ¼ pj and qi ¼ qj are excluded from

the calculation. Kendall’s τ lies between �1 and 1, with 1 for the rank orders of pis and qis
being completely in agreement with each other and with �1 for them being completely
reversal with each other. The Kendall’s τ is rescaled by

Dτ P;Qð Þ ¼ 1� τþ 1
2

, (14)

so that Dτ P;Qð Þ ranges from 0 to 1, with 0 for the rank orders of P and Q being identical.

4.6. Reconstruction of phylogenetic tree

Among the five distance measures mentioned above, histogram intersection and Manhattan
distance showed the best performance. Figure 13 shows the phylogenetic tree of 31 mamma-
lian species reconstructed by our method using Unweighted Pair Group Method with
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Arithmetic mean (UPGMA) with the histogram intersection distance measure. The same tree is
given by Manhattan distance.

5. Conclusion

With the rapid growth of the data size in the archives of biological sequences, the demand for
the alignment-free sequence comparison methods is increasing. Graphical representation is

Figure 13. Phylogenetic tree of 31 mammalian species reconstructed by Kobori’s method [41] using UPGMA based on the
histogram intersection distance measure. The tree is generated by statistical analysis software R with package “ape”.
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one of the major alignment-free sequence comparison methods. In addition to the visual
discrimination abilities of the sequences, the graphical representation has an advantage of
requiring only small computational time. The similarity/dissimilarity between a pair of
sequences is calculated from the feature vectors constructed based on the graphical represen-
tation. The time complexity of the calculation is estimated to beO(K), where K is the dimension
of the feature vector and K is usually independent of the sequence length (except for a few
methods). Even though the computational time to make a graph, and to construct a feature
vector from the graph, may depend on the sequence length N, typically O(N), the construction
of the graph and the feature vector is needed to be done for each sequence only once. Thus, the
time complexity of the sequence comparison based on the graphical representation is regarded
as O(K), which is much less than that of the alignment, O(N2). From the above considerations,
the graphical representation is expected to stay in the main stream of the alignment-free
sequence comparison methods from now on, too.
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Abstract

Advancements in integrated neuroscience are often characterized with data-driven
approaches for discovery; these progressions are the result of continuous efforts aimed at
developing integrated frameworks for the investigation of neuronal dynamics at increas-
ing resolution and in varying scales. Since insights from integrated neuronal models
frequently rely on both experimental and computational approaches, simulations and
data modeling have inimitable roles. Moreover, data sharing across the neuroscientific
community has become an essential component of data-driven approaches to neurosci-
ence as is evident from the number and scale of ongoing national and multinational
projects, engaging scientists from diverse branches of knowledge. In this heterogeneous
environment, the need to share neuroscientific data as well as to utilize it across different
simulation environments drove the momentum for standardizing data models for neuro-
nal morphologies, biophysical properties, and connectivity schemes. Here, I review
existing data models in neuroinformatics, ranging from flat to hybrid object-hierarchical
approaches, and suggest a framework with which these models can be linked to experi-
mental data, as well as to established records from existing databases. Linking neuronal
models and experimental results with data on relevant articles, genes, proteins, disease,
etc., might open a new dimension for data-driven neuroscience.

Keywords: databases, hierarchy-based data models, integrated neuroscience, LEMS,
layer-oriented data models, NeuroML, object-based data models

1. Introduction

Integrated neuroscience (IN) is an emerging field of research with implications that range from
the derivation of neural networks motifs [1] to approaching one of the most important ques-
tions ever tackled: the nature of consciousness [2]. IN has emerged from the aspiration for
insights, which could only be inferred from data obtained across multiple spatial scales
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(Ångströms to centimeters) and temporal scales (milliseconds to years). An integrated
approach toward neuroscience requires multiscale neural data—from molecular regulations
(S1) and the dynamics of individual synapses (S2) to information processing in neural net-
works (S3) and to the orchestrated function of brain maps (S4) and systems (S5) (Figure 1).

In their seminal paper “Neuroscience on the NET” [3], Peter Fox and Jack Lancaster draw
parallels between neuroinformatics and the “genome informatics community” that have gained
remarkable insights leveraging the Web to generate federated frameworks for “collective
wisdom.” Fox and Lancaster called the “prospective developers of neuroscience databases” to
“absorb the collective wisdom of these network pioneers,” handle the challenge of “sematic
compatibility,” and develop a neuroscientific database federation to realize the field’s potential
of “scientific exploration.” The increased attention over the past decade to data-driven neurosci-
ence is attested by the number of published papers having these terms as keywords. Tracking the
number of published papers on the subject (retrieved from PubMed) follows an exponential
curve, where the “knee” of the curve is in 2010 (Figure 2, left). A combination of an integrated
approach to neuroscience with the establishment of a federated framework for “collective
wisdom” of neuroscientists and engineers can fuel the celebration of the “era of the brain.”

1.1. The data tail

Neuroscientific data flow from various resources, ranging from government funded consor-
tiums of laboratories, to individual laboratories spread worldwide.

Figure 1. Schematics of the spatial scales (molecules to complete nervous systems) of integrated neuroscience.
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1.1.1. “Big science” initiatives

Today, one of the most ambitious endeavors aiming at integrated neuroscience is the human
brain project (HBP) [4]. HBP is a multinational EU-funded research initiative, aimed at advanc-
ing multiscale brain-inspired information technology. Neuroinformatics lies at the core of HBP
and orchestrated by COLLAB, a Web-based collaborative cloud-based system, developed
within HBP’s neuro informatics platform (NIP). COLLAB is fueling the project’s other plat-
forms (brain simulation, neurorobotics, medical informatics, and neuromorphic computing)
with immense upstream and downstream data flows. It is distributed as a software as a service
(SaaS) by HBP’s high-performance analytics and computing platform (HPAC), enabling mas-
sive data archiving and distribution of virtual machines (VM) to collaborators, empowering
them with high-end supercomputing capabilities for simulation and data analytics. COLLAB’s
mission is not a trivial one: it must be interfaced with heterogeneous data types and ontologies
to manage metadata storage and provide a query system with which rodent and human brain
atlases can be constructed and populated using different data modalities (anatomy, physiol-
ogy). Moreover, COLLAB should link its data with foreign maps, databases, and atlases. HBP
precedent is the human genome project (HGP) [5], a project that radically changed the ways
research in molecular biology is carried out and how we perceive it. HGP has new disciplines
as heirs, ranging from personalized genomic-based medicine to comparative genomics. It has
established innovative approaches to biological database creation and maintenance, such as
the construction of public small-molecule libraries with which biological pathways can be
standardized. HBP approach aims to do the same for neuroscience.

Inspired by HGP and HBP, a new scientific endeavor termed “BRAIN”was initiated in the US
by the White House, “aimed at revolutionizing our understanding of the human brain” [6] and
like the other initiatives to “empower individual labs by providing…open-access databases.”
Another ambitious project is the NIH-funded human connectome project (HCP), which aims
to characterize the human brain connectivity and functions. In this project, colossal amount of
data will be gathered from many hundreds of patients with state-of-the-art 3D fMRI machines,
EEG and MEG. Full-genome sequencing from all subjects will be performed as well. Behav-
ioral measures in different domains (cognition, emotion, perception, and motor function) will
also be recorded [7]. Other governmentally funded integrated neuroscience programs include
the “Brain Canada” [8] and the “China Brain Project” [9]. All aforementioned acknowledge the

Figure 2. Number of papers linking neuroscience and data across the last 4 decades (right), the emergence of the long-tail
and dark data volumes from exploring the size and number of neuroscientific data sets.

Data Models in Neuroinformatics
http://dx.doi.org/10.5772/intechopen.73516

135



(Ångströms to centimeters) and temporal scales (milliseconds to years). An integrated
approach toward neuroscience requires multiscale neural data—from molecular regulations
(S1) and the dynamics of individual synapses (S2) to information processing in neural net-
works (S3) and to the orchestrated function of brain maps (S4) and systems (S5) (Figure 1).

In their seminal paper “Neuroscience on the NET” [3], Peter Fox and Jack Lancaster draw
parallels between neuroinformatics and the “genome informatics community” that have gained
remarkable insights leveraging the Web to generate federated frameworks for “collective
wisdom.” Fox and Lancaster called the “prospective developers of neuroscience databases” to
“absorb the collective wisdom of these network pioneers,” handle the challenge of “sematic
compatibility,” and develop a neuroscientific database federation to realize the field’s potential
of “scientific exploration.” The increased attention over the past decade to data-driven neurosci-
ence is attested by the number of published papers having these terms as keywords. Tracking the
number of published papers on the subject (retrieved from PubMed) follows an exponential
curve, where the “knee” of the curve is in 2010 (Figure 2, left). A combination of an integrated
approach to neuroscience with the establishment of a federated framework for “collective
wisdom” of neuroscientists and engineers can fuel the celebration of the “era of the brain.”

1.1. The data tail

Neuroscientific data flow from various resources, ranging from government funded consor-
tiums of laboratories, to individual laboratories spread worldwide.

Figure 1. Schematics of the spatial scales (molecules to complete nervous systems) of integrated neuroscience.

Bioinformatics in the Era of Post Genomics and Big Data134

1.1.1. “Big science” initiatives

Today, one of the most ambitious endeavors aiming at integrated neuroscience is the human
brain project (HBP) [4]. HBP is a multinational EU-funded research initiative, aimed at advanc-
ing multiscale brain-inspired information technology. Neuroinformatics lies at the core of HBP
and orchestrated by COLLAB, a Web-based collaborative cloud-based system, developed
within HBP’s neuro informatics platform (NIP). COLLAB is fueling the project’s other plat-
forms (brain simulation, neurorobotics, medical informatics, and neuromorphic computing)
with immense upstream and downstream data flows. It is distributed as a software as a service
(SaaS) by HBP’s high-performance analytics and computing platform (HPAC), enabling mas-
sive data archiving and distribution of virtual machines (VM) to collaborators, empowering
them with high-end supercomputing capabilities for simulation and data analytics. COLLAB’s
mission is not a trivial one: it must be interfaced with heterogeneous data types and ontologies
to manage metadata storage and provide a query system with which rodent and human brain
atlases can be constructed and populated using different data modalities (anatomy, physiol-
ogy). Moreover, COLLAB should link its data with foreign maps, databases, and atlases. HBP
precedent is the human genome project (HGP) [5], a project that radically changed the ways
research in molecular biology is carried out and how we perceive it. HGP has new disciplines
as heirs, ranging from personalized genomic-based medicine to comparative genomics. It has
established innovative approaches to biological database creation and maintenance, such as
the construction of public small-molecule libraries with which biological pathways can be
standardized. HBP approach aims to do the same for neuroscience.

Inspired by HGP and HBP, a new scientific endeavor termed “BRAIN”was initiated in the US
by the White House, “aimed at revolutionizing our understanding of the human brain” [6] and
like the other initiatives to “empower individual labs by providing…open-access databases.”
Another ambitious project is the NIH-funded human connectome project (HCP), which aims
to characterize the human brain connectivity and functions. In this project, colossal amount of
data will be gathered from many hundreds of patients with state-of-the-art 3D fMRI machines,
EEG and MEG. Full-genome sequencing from all subjects will be performed as well. Behav-
ioral measures in different domains (cognition, emotion, perception, and motor function) will
also be recorded [7]. Other governmentally funded integrated neuroscience programs include
the “Brain Canada” [8] and the “China Brain Project” [9]. All aforementioned acknowledge the

Figure 2. Number of papers linking neuroscience and data across the last 4 decades (right), the emergence of the long-tail
and dark data volumes from exploring the size and number of neuroscientific data sets.

Data Models in Neuroinformatics
http://dx.doi.org/10.5772/intechopen.73516

135



fact that establishing standardized data collection and processing, as well as mechanisms for
data sharing and credit allocation, are fundamental to their project’s success.

1.1.2. The long tail data

Enormous “big-science” initiatives such as the HBP, HGP, and the BRAIN have large coordina-
tion teams, and as mentioned above, great emphasis is given within their scope to data and
copyrights. Moreover, they are usually required (by the funding agency) to share their results
with the community. However, routine scientific work in individual labs or small consortiums
generates themajority of scientific data. Although each lab produces relatively limited amount of
data, together they constitute the bulk of neuroscientific information. These granular, individu-
ally assembled data sets (usually given as publishable units) are referred to in the literature as
“long-tail data.” The tail of data also includes “dark-data,” which is comprised of unpublished
information, sitting aimlessly in personal hard drives or in restricted shared folders (Figure 2,
right). Within this tail of neuroscientific data lies a unique opportunity—the possibility of assem-
bling these scattered pieces of knowledge into “deep” data collections [10]. Ferguson and col-
leagues reviewed “data sharing” in the long tail of neuroscience [11]. While describing the
limitations of data sharing among individual labs, they demonstrated the impact such an
attempt would make through the success of the IMPACT consortium [12]. IMPACT collected
tailed clinical data from over 43,243 patients who have suffered from traumatic brain injury (TBI)
over the span of 20 years into a “deep” database. Their data were mined to derive a prognostic
model with unprecedented precision for predicting recovery, ushering a new era for TBI preci-
sion medicine [13]. IMPACT demonstrated the way “deepening” long-tail data can provide
incredible insights and even revolutionize treatment. Another example is the recently established
data sharing community for spinal cord injury (SCI) research [14].

1.1.3. Deepening the long tail data

The main challenges of deepening tailed neuroscientific data encompass all levels of data han-
dling and association including acquisition, quality control, representation, system implementa-
tion, user interface and documentation, data analysis, budget and maintenance, and federation
[15]. Among all these dimensions, data representation is the most extensively discussed, as it
stands as a prominent bottle neck in the definition of data sharing standards. Recently, a group of
thought leaders, comprised of scholars, librarians, archivists, publishers and research funders,
came together to provide the research community with guidelines toward the creation of stan-
dards for data sharing, which they termed the “FAIR Data Principles” [16]. The FAIR guidelines
dictate that data should be (1) findable, with a rich assigned standardized metadata and persis-
tent identifier; (2) accessible, via an identifier and an open, free, and universally implementable
communications protocol; (3) interoperable, via broadly applicable language for knowledge
representation; and (4) reusable, via domain-relevant community standards. A great emphasis
is therefore given in the FAIR guidelines to carefully constructed metadata.

Following the importance of data standardization in computational modeling in biology, and
particularly in neuroscience, the COMBINE consortium has been initiated in 2009 [17]. COM-
BINE aims to coordinate and facilitate different community-based standardization efforts in
the field of computational biology. COMBINE’s neuro-related standardization efforts include
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computational neuroscience ontology (CNO) [18], NeuroML [19], and spiking neural markup
language (SpineML) [20].

One of the most prominent database federations for the neuroscientific community is the
neuroscience information framework (NIF) [21], which has been cataloging and surveying the
neuroscience resource landscape since 2006. NIF currently gives access to over 250 data
sources categorized to different subjects ranging from software tools to funding resources.
NIF provides a distributed query engine to tailed data, which is independently created and
curated. This type of distributed search among independent databases is enabled through
NIF’s DISCO registry tool with which a Web resource can send automatic, or manual, data
updates to the NIF system [22].

1.2. Models for computational neuroscience

Linking neuroscientific data with simulation environments has deep roots in the origins of
neuronal modeling and databases. Starting with the seminal works of Alan Hodgkin, Andrew
Huxely, and Wilifrid Rall during the 1970s, which established today’s most utilized models for
neuronal dynamics, the scale of simulating neural networks has picked up. As computing
resources became abundant, neuronal simulations began to be carried out by an increasing
number of labs, creating the need for a database in which already established models could be
realized and build upon.

Models of neuronal dynamics span over all scales abstraction, where each abstraction level
encapsulates an increasing amount of details (Figure 3) [23].

Increasing level of complexity entails increasing amount of required data. Databases for com-
putational models are therefore well integrated with simulation platforms such as NEURON
[24] and GENESIS [25].

Figure 3. Models’ schematics in computational neuroscience.
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PyNN [26] and NeuroML are independently developed approaches to allow standardization
of neuronal modeling, enabling models’ utilization across simulators. While NeuroML took
the declarative approach for modeling, explicitly specifying the model using in a structured
format (with XML), PyNN took the procedural approach, specifying the models using func-
tions and procedures, in this case, executing python scripts on different simulators.

Neuronal modeling usually requires morphological, connectivity, and physiological data.
Neuromorph.org is the largest federated collection of 3D neuronal reconstructions and associ-
ated metadata [27]. For each neuron, a rich metadata is gathered, including miscellaneous
information ranging from file format to the source specie, sex, age, weight, etc. Forward auto-
matic analysis, ranging from size to topology, is also made for each morphology, leading to a
range of morphological insights [28]. NeuroMorpho.Org is carefully curated and administrated,
with a team responsible for file transfer, conversion, annotation and curation, minimizing the
burden on the data submitter. A model can be submitted to NeuroMorpho.Org only when it is
associated with published results—a curation decision that on one hand ensures data quality but
on the other hand rejects the wealth of information residing on the dark side of the data tail.
Since neuronal modeling incorporates morphological data, as well as physiological data, inter-
operability between the two is essential. Indeed, the NeuroMorpho.Org database can be utilized
with other complementary resources such as the CellPropDB, NeuronDB [29], ModelDB [30],
and MicrocircuitDB (all four are curated by SenseLab at Yale university). While CellPropDB is
comprised of data regarding receptors, channels, and transmitters, NeuronDB distributes these
elements across a specific neuron. ModelDB comprised of computational models of neurons
derived from NeuronDB. MicrocircuitDB contains circuit modeling, which was built upon data
from ModelDB. Today, all SenseLab databases are tightly coupled with Neuron [31].

2. Data models

Neuroscientific data models must encompass the different levels of neuronal scales: starting at
the molecular regime, going up to the membrane and synapse levels, moving through the
dendritic tree and axonal branches, and finishing at the circuit and system levels. Each level
encapsulate further details. For example, at the circuit level, data on proteins and ions is
‘hidden’ at the encapsulated lower levels of representation. Various data models exist for each
scale—here I chose a representative for each model, which in my opinion reflects its main
properties. Please note that the schematics shown below for each data model, particularly for
Neuron’s object-based representation schemes, do not aim to accurately specify the objects
hierarchy scheme in terms of inheritance or composition. They are given here to purely
illustrate the general approach for modeling.

2.1. Structuring data

Following samples acquisition, data must be structurally organized. It can be structured in
either a “flat file,” a tabular formation, a structured file (such as XML), an object based, or a
layer-oriented scheme (Figure 4). Data in a flat file are stored in an unstructured manner and
therefore manipulating it would require reading it entirety into memory. Data can be
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structured as a table, where each value is headed with a type and usually also with a size
identifier. eXtensible markup language (XML) is a different approach for data structuring, in
which data is arranged in schemes, where each subsequent level increases the scope of the
previous one. XML gained industry momentum due to its simplicity and flexibility, enabling
declarative specifications rather than coding. This facilitates automated transformation of
model specifications into multiple other formats. One of the main alternatives to data model-
ing is object-based representation of information, in which entities are defined with a set of
properties and connected as attributes. Object-based representation allows the encapsulation
of internal details of the data associated with the heterogeneity of the underlying data sources.
Another approach is the layer-oriented approach (LOA), in which interlinked declarative
languages (or layers) specify the model. The rationale behind the LOA is the premise that
computational models are not a “flat collection of equations” but rather a hierarchical structure
from which the underlying biological concept is reflected.

2.2. Models of morphological data

Before data can be modeled, it needs to be abstracted. The level of neuromorphological details
with today’s advanced imaging techniques, such as the two photons microscopy, is staggering.
Moreover, since image stacks cannot be directly used for computational modeling due to their
nontrivial interpretability and size, morphology must be reconstructed from them. Encapsula-
tion of the details of neuromorphological data needs to consider its application, which in our
case is computational modeling. Since different environments such as Neurolucida, NEURON,
and GENESIS use a different representation of morphological data (Figure 5), a generalized
representation, such as the MorphoML, is required to enable easy conversion to each format.

2.2.1. Flat structuring of morphological data

Neuromantic [32] is a semiautomatic stand-alone freeware reconstruction application, in
which serial image stacks (JPEG to TIFF) are used to reconstruct dendritic trees. Reconstruc-
tions are stored in the SWC data format. SWC is one of the most widely used data models for
neuromorphological data, for which a standardized version is used by Neuromorpho.org (not
to be confused with Adobe file format). It is ASCII encoded text, where each line represents a
single morphological sample point, which is represented by seven data items: id, structure
identifier, 3D location, radius, and parent id. For example, the data entry:

Figure 4. Schematics of data structuring paradigms.

2 1 -2 -3.33 0 7.894 1
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which serial image stacks (JPEG to TIFF) are used to reconstruct dendritic trees. Reconstruc-
tions are stored in the SWC data format. SWC is one of the most widely used data models for
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to be confused with Adobe file format). It is ASCII encoded text, where each line represents a
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signifies a sample point with id number 2, connected to sample point number 1, identified as
being located at the soma (structure identifier 1), located at (x = �2, y = �3.33, z = 0), in a
compartment with a 7.894 radius. SWC files are generally small in size, trivial to read, and
widely adopted across applications.

2.2.2. Hierarchical structuring of morphological data

Another approach for neuromorphological data modeling is using XML. One example is the
MorphoML [33], which is a part of NeuroML. For example, defining soma and a dendrite can
be written as:

This XML-based neuromorphological specification can be verified using a dedicated software,
as well as be converted to GENESIS or NEURON readable formats. Schematics of hierarchy-
based representations of neuromorphological data are illustrated in Figure 6 (left).

2.2.3. Object-based structuring of morphological data

NEURON, one of the dominant players in computational neuroscience, has a dedicated file
type termed “HOC.” It has C-like syntax with an additional object-oriented expressability. One

Figure 5. Representation of morphological data across different environments.

<cells>
<cell name = "Example">

<meta:notes>A Simple cell</meta:notes>
<segments>

<segment id = "0" name = "Soma" cable = "0">
<proximal x = "0.0" y = "0.0" z = "0.0" diameter = "16.0"/>
<distal x = "0.0" y = "0.0" z = "0.0" diameter = "16.0"/>

</segment>
<segment id = "1" name = "Dend" parent = "0" cable = "1">

<proximal x = "8.0" y = "0.0" z = "0.0" diameter = "5.0"/>
<distal x = "28.0" y = "2.0" z = "0.0" diameter = "6.0"/>

</segment>
</segments>
<cables>

<cable id = "0" name = "SomaCable" />
<cable id = "1" name = "DendriteCable" />

</cables>
</cell>

</cells>
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of the uses for “HOC” is defining a neuronal morphology by constructing an array of “section”
objects, each defined by a series of four points (using neuron’s “pt3dadd” function): three
coordinates and a radius. Sections can be connected to one another (using neuron’s “connect”
function). For example, two connected sections can be characterized by sample points: (109.72,
125.39, 19.28) and (109.93, 125.85, 19.01) with radiuses 3.96136 and 3.88, respectively, for the
first section and (115.42, 125.23, 15.19) and (115.69, 125.16, 15.05) with radiuses 0.752 and 0.64,
respectively, for the second section:

A list of sections can be linked as attributes in a “cell” class, enabling treating them in a unified
(abstracted) manner. Schematics of object-based representation of neuromorphological data
are illustrated in Figure 6 (right).

2.2.4. Tabular structuring of morphological data

One of the prevalent platforms for morphological reconstruction is Neurolucida (http://www.
mbfbioscience.com/neurolucida), which provides different data models for representation,
including ASC, DAT, and XML, for which format specification is not publicly available.
However, reversed engineered specification for Neurolucida’s DAT data format (available

create section[703]

section[0] {
pt3dclear()
pt3dadd(109.721,125.39,19.2812,3.96136,0)
pt3dadd(109.93,125.285,19.0172,3.88406,0)

}

section[1] {
pt3dclear()
pt3dadd(115.427,125.239,15.19,0.752,0)
pt3dadd(115.695,125.161,15.0518,0.649936,0)

}
connect section[1](0.0), section[0](1.0)

Figure 6. Hierarchical and object-based representation of neuromorphological data.
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signifies a sample point with id number 2, connected to sample point number 1, identified as
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compartment with a 7.894 radius. SWC files are generally small in size, trivial to read, and
widely adopted across applications.
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Another approach for neuromorphological data modeling is using XML. One example is the
MorphoML [33], which is a part of NeuroML. For example, defining soma and a dendrite can
be written as:

This XML-based neuromorphological specification can be verified using a dedicated software,
as well as be converted to GENESIS or NEURON readable formats. Schematics of hierarchy-
based representations of neuromorphological data are illustrated in Figure 6 (left).

2.2.3. Object-based structuring of morphological data

NEURON, one of the dominant players in computational neuroscience, has a dedicated file
type termed “HOC.” It has C-like syntax with an additional object-oriented expressability. One
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<cells>
<cell name = "Example">

<meta:notes>A Simple cell</meta:notes>
<segments>

<segment id = "0" name = "Soma" cable = "0">
<proximal x = "0.0" y = "0.0" z = "0.0" diameter = "16.0"/>
<distal x = "0.0" y = "0.0" z = "0.0" diameter = "16.0"/>
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<proximal x = "8.0" y = "0.0" z = "0.0" diameter = "5.0"/>
<distal x = "28.0" y = "2.0" z = "0.0" diameter = "6.0"/>
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</segments>
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<cable id = "1" name = "DendriteCable" />

</cables>
</cell>

</cells>

Bioinformatics in the Era of Post Genomics and Big Data140

of the uses for “HOC” is defining a neuronal morphology by constructing an array of “section”
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A list of sections can be linked as attributes in a “cell” class, enabling treating them in a unified
(abstracted) manner. Schematics of object-based representation of neuromorphological data
are illustrated in Figure 6 (right).
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One of the prevalent platforms for morphological reconstruction is Neurolucida (http://www.
mbfbioscience.com/neurolucida), which provides different data models for representation,
including ASC, DAT, and XML, for which format specification is not publicly available.
However, reversed engineered specification for Neurolucida’s DAT data format (available
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through: neuronland.org) reveals a hierarchy of data blocks, each identified by a Hexadecimal-
encoded header (specifying the block type and size), followed by ASCII encoded data. For
example, name and sample data are encoded using:

The type of block determines the data which follow the header including the Tree and Sub-
Tree types to define the topology and connections of the samples. Data is therefore organized
as a table.

Frameworks such as neuroconstruct [34] can import morphology files in all of the above
formats and use them in conjunction with network specification and cellular mechanisms to
generate script files for various simulation platforms, such as NEURON, GENESIS, and
PyNN. While Neuromorpho.org adopted SWC and NEURON’s data model as their data-
sharing standard, the Human Brain Project adopted the Neurolucida data model as the
format of choice.

2.3. Models of biophysical data

The establishment of the Hodgkin–Huxley-type compartments modeling and the develop-
ment of experimental methods such as patch-clamp recording and imaging techniques are
two complementary advancements which have transformed the field of neuroscience. Molec-
ular aspects of neuroscience could be precisely measured and then used for computational
modeling. Modeling neuronal behavior at the molecular level is a crucial aspect of modern
neuroscience. Standardizing and modeling neurophysiological data, which often include
mechanisms as a set of nonlinear equations, differential equations, or kinetic reaction schemes,
are critical for utilization of computational models across simulators.

2.3.1. Object-based structuring of biophysical data

Over the years, NEURON has been extended to include a library of biophysical mechanisms,
which were developed using its dedicated high-level programming language: NMODL (which
was also adopted later by GENESIS). For example, a model for a leak current using the
canonical electrical model of a current channel, with i (leak current), e (equilibrium potential),
and g (conductance) can be defined using NMDOL with [35]:

% header : size : String
0x0001 : 0x0000000A : 'Name'

% header : size : x : y : z : d : section id
0x0101 : 0x00000018 : 2.15 : -3.25 : 18.55 : 0.54 : 0x0000

NEURON { % interface
SUFFIX leak % density mechanism
NONSPECIFIC_CURRENT I % i in charge of the balance equations
RANGE i, e, g % are functions of position

}
PARAMETER {

g = 0.001 (siemens/cm2) < 0, 1e9 >
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In this modeling paradigm for physiological data, its type is encapsulated with a “template”
class (following the object-based data structuring) and instantiate as objects where appropriate.
For example, to instantiate a leakage current (with specific values for i and g) and attribute it to a
NEURON’s cable segment, one can write:

Schematics of object-based representation of biophysical data are illustrated in Figure 7 (right).

2.3.2. Hierarchical structuring of biophysical data

ChannelML is the second layer of NeuronML, enabling specifying biophysical data with XML.
For example, specifying a Na + channel in ChannelML can be written as:

e = -65 (millivolt)
}
ASSIGNED {

i (milliamp/cm2)
v (millivolt)

}
BREAKPOINT { % to be incrementally executed by the simulator

i = g * (v - e)
}

cable {
nseg = 5
insert leak
g_leak = 0.002 % S/cm2
e_leak = -70 % mV

}
print cable.i_leak(0.1) % show leak current density near 0 end of cable

<channelml>
<channel_type name="NaChannel" density="yes">

<current_voltage_relation
cond_law="ohmic" ion="na" default_erev="50" default_gmax="120">

<gate name="m" instances="3">
<closed_state id="m0"/>
<open_state id="m"/>
<transition name="h" from="m0" to="m" expr_form="exp_linear"

rate="1" scale="10" midpoint="-40"/>
<transition name="beta" from="m" to="m0" expr_form="exponential"

rate="4" scale="-18" midpoint="-65"/>
</gate>
<gate name="h" instances="1">

<closed_state id="h0"/>
<open_state id="h"/>
<transition name="alpha" from="h0" to="h" expr_form="exponential"

rate="0.07" scale="-20" midpoint="-65"/>
<transition name="beta" from="h" to="h0" expr_form="sigmoid"

rate="1" scale="-10" midpoint="-35"/>
</gate>

</current_voltage_relation>
</channel_type>

</channelml>
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canonical electrical model of a current channel, with i (leak current), e (equilibrium potential),
and g (conductance) can be defined using NMDOL with [35]:
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NEURON { % interface
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NONSPECIFIC_CURRENT I % i in charge of the balance equations
RANGE i, e, g % are functions of position

}
PARAMETER {

g = 0.001 (siemens/cm2) < 0, 1e9 >
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In this modeling paradigm for physiological data, its type is encapsulated with a “template”
class (following the object-based data structuring) and instantiate as objects where appropriate.
For example, to instantiate a leakage current (with specific values for i and g) and attribute it to a
NEURON’s cable segment, one can write:

Schematics of object-based representation of biophysical data are illustrated in Figure 7 (right).

2.3.2. Hierarchical structuring of biophysical data

ChannelML is the second layer of NeuronML, enabling specifying biophysical data with XML.
For example, specifying a Na + channel in ChannelML can be written as:

e = -65 (millivolt)
}
ASSIGNED {

i (milliamp/cm2)
v (millivolt)

}
BREAKPOINT { % to be incrementally executed by the simulator

i = g * (v - e)
}

cable {
nseg = 5
insert leak
g_leak = 0.002 % S/cm2
e_leak = -70 % mV

}
print cable.i_leak(0.1) % show leak current density near 0 end of cable

<channelml>
<channel_type name="NaChannel" density="yes">

<current_voltage_relation
cond_law="ohmic" ion="na" default_erev="50" default_gmax="120">

<gate name="m" instances="3">
<closed_state id="m0"/>
<open_state id="m"/>
<transition name="h" from="m0" to="m" expr_form="exp_linear"

rate="1" scale="10" midpoint="-40"/>
<transition name="beta" from="m" to="m0" expr_form="exponential"

rate="4" scale="-18" midpoint="-65"/>
</gate>
<gate name="h" instances="1">

<closed_state id="h0"/>
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<transition name="alpha" from="h0" to="h" expr_form="exponential"

rate="0.07" scale="-20" midpoint="-65"/>
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</current_voltage_relation>
</channel_type>
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Neuroconstruct support both data models. Moreover, scripts for converting ChannelML spec-
ification to NEURON are also available. Schematics of hierarchy-based representation of
biophysical data are illustrated in Figure 7 (right).

2.3.3. Layer-oriented structuring of biophysical data

Another approach for physiological modeling is the layer-oriented approach (LOA) [36], in
which the mathematical model (usually a set of differential equations) is governed by
interlinked aspects of its structure. The LOA rationale is that biophysiological models such as
the Hodgkin–Huxley model for ion channels have a hierarchical structure from which
the underlying biological concept is reflected. Layer structure and relations are described in
Figure 8.

By structuring mathematical behavior in a layered-structure manner, modules can be reused
where different parameters are incorporated. One can utilize for example the same computa-
tional mechanism for membrane potential with either Hodgkin-Huxley model or GHK model
or utilize the same gating dynamics for different dynamic models. Here, each layer is defined
using a XML-like definition language (similarly to what was shown above), where connections
between layers are defined separately in a meta-data file.

2.4. Models of network data

A model of a neural network must indicate at the very least the following specifications:
connectivity scheme, as well as neuron and synapse models (typically by a set of differential
equations, spike generation criteria, and refractory periods) [37].

2.4.1. Hierarchical structuring of network data

NetworkML is NeuroML’s third specification level, which allows positioning neurons in 3D,
as well as defining their connectivity pattern, and synaptic specifications to other neurons.
It uses three core elements for network description: population (cells of a specific type),

Figure 7. Hierarchical and object-based representation of biophysical data.
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projection (set of synaptic connections between populations), and input (describes an exter-
nal electrical input into the network). Networks can be described with either instance-based
(explicit list of positions and synaptic connections) or template-based (e.g., placing and
connecting N cells randomly in a particular rectangular region) representation. For example,
placing two populations of neuron PopA and PopB in 3D can be specified in NetworkML
with [19]:

PopA and PopB can be connected with “projection”:

Figure 8. Layer-oriented representation of biophysical data.

<populations>
<population name="PopA" cell_type="CellA">

<instances size="2">
<instance id="0"> <location x="0" y="0" z="0"/> </instance>
<instance id="1"> <location x="10" y="0" z="0"/> </instance>

</instances>
</population>
<population name="PopB" cell_type="CellB">

<instances size="3">
<instance id="0"> <location x="0" y="100" z="0"/> </instance>
<instance id="1"> <location x="10" y="100" z="0"/> </instance>
<instance id="2"> <location x="20" y="100" z="0"/> </instance>

</instances>
</population>

</populations>
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Neuroconstruct support both data models. Moreover, scripts for converting ChannelML spec-
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Figure 7. Hierarchical and object-based representation of biophysical data.
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projection (set of synaptic connections between populations), and input (describes an exter-
nal electrical input into the network). Networks can be described with either instance-based
(explicit list of positions and synaptic connections) or template-based (e.g., placing and
connecting N cells randomly in a particular rectangular region) representation. For example,
placing two populations of neuron PopA and PopB in 3D can be specified in NetworkML
with [19]:

PopA and PopB can be connected with “projection”:

Figure 8. Layer-oriented representation of biophysical data.

<populations>
<population name="PopA" cell_type="CellA">

<instances size="2">
<instance id="0"> <location x="0" y="0" z="0"/> </instance>
<instance id="1"> <location x="10" y="0" z="0"/> </instance>

</instances>
</population>
<population name="PopB" cell_type="CellB">

<instances size="3">
<instance id="0"> <location x="0" y="100" z="0"/> </instance>
<instance id="1"> <location x="10" y="100" z="0"/> </instance>
<instance id="2"> <location x="20" y="100" z="0"/> </instance>

</instances>
</population>

</populations>

Data Models in Neuroinformatics
http://dx.doi.org/10.5772/intechopen.73516

145



Schematics of hierarchy-based representation of network data are illustrated in Figure 9 (left).

2.4.2. Object-based structuring of network data

In NEURON, neurons can be interconnected to form networks using the object-based approach.
For example, giving an array of “cell” objects (each encapsulates its defining sections, such as a
soma and dendrites), they can be connected (e.g., circle topology) using Neuron’s ExpSyn and
NetCon object using (written in NEURON-Python):

Schematics of object-based representation of network data are illustrated in Figure 9 (right).

for i in range(N): % N cells
src = cells[i] % select source cell
tgt = cells[(i + 1) % N] % select target cell
syn = h.ExpSyn(tgt.dend(0.5)) % place a synapse in the middle of the target
nc = h.NetCon(src.soma(0.5)._ref_v, syn, sec=src.soma)

% Connect source soma to target synapse
nc.weight[0] = .05
nc.delay = 5

<projections units="Physiological Units">
<projection name="NetworkConnection" source="PopA" target="PopB">

<synapse_props synapse_type="DoubExpSynA" internal_delay="5" weight="1" threshold="-20"/>
<connections>

<connection id="0" pre_cell_id="0" pre_segment_id = "1"
post_cell_id="1" post_segment_id = "0" post_fraction_along = "0.25"/>
<connection id="1" pre_cell_id="1" pre_segment_id = "1"
post_cell_id="0 post_segment_id = "0" post_fraction_along = "0.25"/>
</connection>

</connections>
</projection>

</projections>

Figure 9. Hierarchical and object-based representation of network data.
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2.5. Integrated models

When it comes to integrated structuring of neuromorphic data, NeuroML is a prominent
standard. It is defined using MorphML, ChannelML, and NetworkML, as they were
described above. This integrated approach for neuroinformation standardization enables

Figure 10. NeuroML 1 integrated approach to morphological, biophysical and network modeling.

Figure 11. NeuroML 2 hybrid approach to morphological, biophysical and network modeling.
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such models to be directly converted and mapped into different simulation frameworks.
When integrating standard representation models with a “Meta Simulator” such as the
NeuroConstruct or PyNN, a powerful framework is established. With such an approach,
data can be distributed across multiple simulators, compared, and then validated with
experimental data (Figure 10) [19].

In the second version of NeuroML, a new holistic approach is being developed for modeling,
termed Low Entropy Model Specification (LEMS). LEMS is a hierarchical, XML-based lan-
guage in which ion channels, synapses, neurons, and networks can be specified together. It
combines a hybrid hierarchical object-based approach to modeling. An illustration is given in
Figure 11. Detailed example is given in [38].

3. Rapid development of specialized neurocentric databases

In contrary to primary and secondary databases, specialized databases are mostly curated by
individual laboratories or consortiums. They are characterized with a research-specific relational
schema and specialized data types. Specialized databases are under constant development,
aiming at supporting the rapid advancements in experimental techniques, which often produce
vast amount of heterogeneous data. Most specialized databases are comprised of both new
results and datasets–derived entries, constituting a hybrid approach of the new and the
established. This stands as a major challenge to specialized data base designer, which have to
support data querying, acquiring, and parsing from established data sources, as well as to
integrate (or link) the results, with their own data model.

Specifically, the curation of specialized databases for neuroinformatics is an ever-growing
challenge due to the need for organizing, structuring, and interconnecting vast amount of
data, with standardized data structures. Here, an open-source framework for the curation of
specialized databases is proposed. Our framework has the potential of realizing two com-
plementary needs in the context of neuroinformatics: (1) structuring experimental data with
standardized models which can be used for cross-simulations and (2) incorporating the
experimental data and models with other data such as relevant diseases, articles, and bio-
logical models.

3.1. Framework

Databases often use a stable URL syntax, which renders a standard set of input parameters
into the information needed to search and fetch the requested data. The proposed framework
supports the generation of URL structured interface to local and remote data sets, including
NCBI’s databases, Malacards, and Biomodels. It was implemented with Java, extended to
support objects’ persistency with EclipseLink. I chose Apache Derby (part of the Apache DB
Project) for data management. Derby is written in Java, and it is suitable for code embedding
due to its small footprint and ease of use. Syntactic analysis was based on the w3c.dom open
libraries, Apache Commons, J3D, and jsoup. The framework is described in length and exem-
plified for the curation of a database dedicated for aneurysms in [39].
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In the context of neuroinformatics, the user can therefore take her morphology, biophysical,
and connectivity experimental data, encapsulate them into interconnected classes (thus, creat-
ing a schema), and then link each of them to a structured data model (such as the ones
described above). Each data model can be connected to articles, biological models, and dis-
eases, which can be derived from existing databases and deposited in a specialized local
database. Data can be retrieved later for further analysis. See schematics in Figure 12.

The proposed framework can be implemented with different packages and programming
environments. For example, Java was utilized to map data entities to NCBI’s PubChem schema
and to provide functions to invoke NCBI eUtilities and PubChem web services [40]. Similarly,
objects persistency can be attained with either Python, Java, or C++. Python’s standard library
for example supports a family of hash-based file formats and objects serialization. The Java
Persistence API (JPA) was also implemented by various development groups, including
Apache OpenJPA, Hibernate, and EclipseLink, offering metadata-based automatic creation of
data models. Providers of database management frameworks are likewise varied and include
Apache Derby and the cloud-based MongoDB.

3.2. Implementation

I have recently proposed a framework for the development of specialized databases [39]. In this
framework, Java was chosen as the development environment, with which interfaces to online
databases such as MalaCards (to retrieve disease information), Biomodels (to retrieve biological
models), and NCBI’s databases (to retrieve gene, taxonomy, protein, and articles data) were
designed. By integrating these interfaces with EclipseLink (JPA provider), Apache Derby (database

Figure 12. Database integrated approach to morphological, biophysical and network modeling.
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manager), and a range of data parsers, a versatile framework for the curation of specialized data-
bases is provided. This framework can be used to integrate new data and database-derived infor-
mation into auser-defineddatamodel.A schematic of the implementation is presented in Figure 13.

In the framework’s main data flow, structured URL interfaces are used to establish connections
between the user-defined data model to online data sets. Here, I used Entrez to interface with
NCBI’s data sets. NCBI’s Entrez Programming Utilities provide a structured URL interface to
their dozens of databases covering a variety of biomedical data, including gene and protein
sequences, gene records, three-dimensional molecular structures, and biomedical literature [41].

Efforts to provide a similar utility for the neuroscientific community were also made. For
example, Samwald and colleagues developed the “Neuron Entrez” [42], which integrates
several neuroscientific ontologies: NeuronDB and ModelDB, subcellular anatomy ontology
(SAO), and an OWL conversion of the cell centered database (CCDB). Once matured, this type
of integrated neurocentric retrieval of data can greatly enhance frameworks, such as the one
being proposed here.

A series of data processing tools were utilized to implement parsers for syntactic analysis of
the retrieved data. The w3c.dom package provides the document object model (DOM) inter-
faces, which were used as the API for XML processing. This is essential for handling NeuroML
structured data. The Apache Commons’ libraries, the jsoup library, and the org.j3d library of
the Java 3D Community were utilized for CSV, html, and STL parsing, respectively.

Figure 13. Realization of the database integrated approach to morphological, biophysical and network modeling.
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The user utilizes Java object-oriented approach to encapsulate the retrieved data and to inte-
grate it with her own data model. Object-relational mapping (converting Java objects to
relational tables) is defined via persistence metadata. Metadata is defined via annotations
embodied in the Java class and with an accompanying XML file. This allows EclipseLink to
statically and dynamically query the database with SQL-like syntax. Apache Derby supports
SQL data storing and querying in a client/server operation mode (commonly used database
architecture). Suggested implementation for the above is provided via NBEL-lab.com and
distributed under the creative common agreement.

4. Conclusions

Recent developments in Integrated Neuroscience (IN) are often characterized with efforts
to up-scale data production and to provide frameworks from which new insights can
emerge [43]. Since insights from integrated neuronal models often rely on the combination
of experimental and computational approaches [44], simulations and modeling have a key
role. Moreover, sharing neuroscientific data in the heterogeneous environment of IN drove
the momentum for standardizing data models for neuronal morphologies, biophysical
properties, and connectivity. Here, I propose a framework with which standardized
models can be structured with experimental data, as well as with established data from
existing databases. A combination of an integrated approach to neuroscience with the
establishment of a federated framework for “collective wisdom” of neuroscientists and
engineers might open a new dimension for data-driven neuroscience and fuel the celebra-
tion of the “era of the brain.”
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1. Introduction to network-based systems toxicology

The ongoing public debates on the impact on human health of glyphosate, bisphenol A, or electronic 
cigarettes have underlined the importance of performing reliable toxicological assessments [1–3]. 
In this context, regulatory authorities need to require evidence packages to assess the health risks 
associated with chemical compounds of uncertain safety risk contained in consumer products or 
present in the environment. In order to make the authorities’ decisions persuasive to the public, it is 
critical to support them with objective evidence obtained using the latest scientific and technologi-
cal advances. The US National Research Council’s (NSR) “Toxicity Testing in the 21st Century: A 
Vision and a Strategy” manifesto, issued in 2007, was a noteworthy response to this critical need [4].  
It fostered innovative, interdisciplinary approaches (i) to scale up the experimenting capacities by 
favoring in vitro screening to whole-animal testing, (ii) to deepen the interpretation of the experi-
ments in terms of biological mechanisms by integrating the pathway-based approaches used in 
biomedical research, and (iii) to process the extensive data generated using adequate statistical and 
modeling tools to provide quantitative answers and informative predictions.

Developments in systems toxicology during the last 10 years have been driven largely by the goal 
of concretizing the NSR’s vision. Simply stated, systems toxicology can be seen as the applica-
tion of the systems biology mindset and approaches to toxicity testing. Thus, an essential feature 
of systems toxicology is the holistic perspective used in systems biology, in which a biological 
system is viewed as a complex assembly of interacting, often numerous parts rather than the 
simple union of individual elements, which corresponds to the reductionist standpoint [5, 6]. The 
first consequence of the holistic perspective is the fundamental role played by molecular omics 
profiling technologies, as they enable the simultaneous quantification of the abundances of all 
the (detectable) elements of a given class of biomolecules. The technology used most frequently 
is transcriptome profiling, which has become an almost routine operation thanks to its numer-
ous advantages (technical, practical, and economical). In the current post-genomic era, its cover-
age exceeds 20,000 genes, and the resulting large data volume requires proper Bioinformatics 
processing to be exploited adequately. The second consequence of the holistic perspective is the 
introduction of a modeling approach for the interactions between the system parts to produce 
the system-level properties. In cases where transcriptome profiles are available, the modeling 
approach builds upon the relationships between genes to achieve a bottom-up description of the 
biological mechanisms taking place in cells, tissues, or organs. This inherent modeling aspect 
implies that systems toxicology positions itself at the final end of the “gene sets < pathways < 
networks” sequence, which results from the ordering of the transcriptomics interpretation 
approaches according to increasing structural complexity and informational richness [7]. In that 
sense, systems toxicology can be distinguished from toxicogenomics, for which the gene inter-
action modeling aspect is not an essential component. It is important to stress, however, that 
complete descriptions in terms of interacting genes are not (yet) available for all the system-level 
biological mechanisms. Inversely, not all genes measured by transcriptomics have been shown to 
be involved in system-level biological mechanisms.

In this chapter, we will focus on the developments of network-based systems toxicology [8], as 
networks have turned out to be the most suitable description framework for systems biology [5, 6].  
In this case, the complex interaction map between the system parts accompanying the holistic 
view reduces to a (large) series of pairwise relationships encoded by edges of the networks, 
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which connect two nodes representing the interacting system parts. Importantly, networks have 
been shown to constitute a suitable framework for not only representing but also understanding 
systems-level biological mechanisms [9]. Network-based approaches have been subsequently 
extended to achieve a novel understanding of disease effects in healthy systems [10–12] as well 
as to integratively examine the main and secondary effects of drugs (Figure 1a) [13, 14]. From 
the point of view of toxicological assessments, it is very reasonable to expect that network-based 
approaches would provide an appropriate framework for examining the system responses to 
test exposure in terms of perturbed biological mechanisms, in perfect alignment with the NSR’s 
vision. As system-level biological mechanisms result from the interactions of multiple nodes, 
the network-based modeling framework enables elegant collection of the distributed effects of 
a test exposure on individual nodes into the perturbation of a single entity (Figure 1a) [8, 15].

In the remaining part of this section, several essential features of applying network-based 
systems toxicology are briefly explained. First, it is important to note the fundamental differ-
ence between systems biology and systems toxicology or, more broadly, between the inves-

Figure 1. Features of network-based systems toxicology. (a) Schematic representation of network-based view of disease, 
drug, and exposure effects. (b) the iterative discovery cycle in systems biology [5]. (c) the linear five-step assessment 
workflow underlying network-based systems toxicology [8]. (d) the tridimensional representation “biological systems-
exposure treatments-biological networks” illustrating the mechanism-based comparative assessment of exposure effects 
(blue arrow) and in vitro-in vivo or interspecies translatability (red arrow).
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tigation of novel biological mechanisms and the biological mechanism-based assessment of 
exposure effects in a toxicity testing context. When investigating a biological system to dis-
cover novel mechanisms, the goal of the experimental data analysis and interpretation is to 
identify the most promising candidate mechanisms compatible with the observations, which 
would eventually lead to a novel, refined hypothesis to be tested. The implementation of 
this iterative process has been facilitated by systems biology, as the rich system-wide omics 
data allow for both confirmatory and exploratory investigations (Figure 1b) [5]. On the other 
hand, in the toxicity testing context, the biological mechanisms and their models must be 
determined a priori and remain “locked” when evaluating the test exposure experimental 
data in a systematic and least subjective manner. The outcome of the experiment is therefore 
the comparative assessment of the effects of the test exposure with varied parameters, such as 
the tested compounds, their doses, and the exposure durations. This can be represented by a 
linear assessment workflow (Figure 1c) [8], in contrast to the circular systems biology discov-
ery cycle mentioned before. Interestingly, this difference between discovery and assessment 
approaches possesses an analogy in the context of transcriptomics gene set analysis: the com-
petitive “Q1” statistic enabling the identification of the best associated gene sets corresponds 
to the discovery mode, whereas the self-contained “Q2” statistic quantifying the relevance of 
a given gene set corresponds to the assessment mode [16, 17].

Another advantageous aspect of applying network-based systems toxicology is the fact that 
it offers an explicit framework for “mechanistic translatability” between test systems. As the 
resemblances between exposure responses in human subjects and test systems (in vivo ani-
mal or, more recently, in vitro human) are fundamental in toxicity testing, the network-based 
approach enables establishing the validity of intersystem associations using the mappings 
of the biological mechanism-specific networks (red arrow on Figure 1d). This intersystem 
mechanistic translatability supports the use of in vitro test systems, such as cellular cultures, 
organotypic tissues, or organ-on-a-chip models, to reduce animal testing (typically rodents), in 
agreement with the NSR vision and the “3Rs” principles (i.e., “reduce the number of animals,” 
“refine the experiments,” and “replace the animals with nonanimal systems”) [18–21]. The tri-
dimensional representation “system-exposure-network” also contains the setup for perform-
ing a comparative, mechanism-based assessment of exposure responses, which obviously  
remains the primary goal of network-based systems toxicology (blue arrow on Figure 1d, 
which results from the completion of the workflow on Figure 1c) [8, 15, 22]. A biologically 
sound impact assessment between two considered exposures therefore consists of multicri-
teria comparisons between the mechanism-specific responses or “network perturbations”, 
based on an appropriate selection of biological mechanisms.

The two concepts of network perturbation quantification and biological network selection 
are central to network-based systems toxicology and will be deepened further in this chap-
ter. The methodology for calculating network perturbation amplitudes (NPAs) will be pre-
sented as a biologically driven complexity reduction scheme delivering valuable, structured 
information about the impact of toxicological exposure (Section 2). The related endeavor to 
ensure the quality of the biological networks will discussed afterward and illustrated by two 
innovative approaches based on crowdsourcing and literature mining (Section 3). The mod-
eling perspective will be broadened beyond networks of interacting molecules to present 
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other components of the multiscale modeling framework of an organism response to expo-
sure (Section 4). Finally, emerging concepts from the quantification of adverse outcome path-
ways (qAOPs) will illustrate how extended multiscale modeling and biological knowledge 
assembly can combine to develop the predictive aspect of network-based systems toxicol-
ogy. Throughout this chapter, our intention will not be to present a comprehensive review 
nor an abstract synthesis; rather we will coherently pick out concepts that are relevant for 
the past, current, and future developments of network-based systems toxicology as well as 
appealing in the context of “Bioinformatics in the Era of Post Genomics and Big Data.”

2. Quantification of network perturbation amplitudes

In this section, we describe in more detail a core element of network-based systems toxicol-
ogy: the quantification of NPAs, which amounts to calculating the exposure-induced response 
of biological mechanisms modeled by a network using transcriptomics data. As shown in 
Figure 1c, it represents a key ingredient of the five-step workflow for toxicity assessment and 
constitutes a concrete application of network-based systems toxicology [8, 15, 22]. Here we 
focus on the particular type of “causal networks” for which a mathematically and statistically 
sound methodology has been recently developed [23, 24]. Given a suitably organized collec-
tion of causal networks selected for a priori relevant biological mechanisms, the structure 
of the associated NPA results can be seen as a complexity reduction scheme starting from 
large experimental transcriptomics data. It provides a quantification of the exposure-induced 
impact on the considered biological mechanisms, which is used to comparatively assess tox-
icity in concrete applications. Additionally, it constitutes the starting point for the network-
based systems toxicology developments that will be discussed later in this chapter.

Concretely, the implementation of the NPA methodology applicable to causal networks 
requires three distinct inputs in terms of experimental data and biological knowledge:

1. The differential gene expression values obtained from the transcriptomics data. Although 
we will consider them as resulting from “treatment versus control “pairwise comparisons, 
other types of contrasts can be used in the case of less trivial designs. These data are ob-
tained by applying the suitable statistical models at the individual gene level and extend 
over the full transcriptome, in line with the first aspect of the holistic perspective of sys-
tems biology discussed above. We used to call them “systems response profiles” [8, 22, 25].

2. A suitably organized collection of causal networks covering the essential biological mecha-
nisms of the test system response to the applied exposure treatment. Unlike other types of 
networks, causal biological networks contain nodes that not only describe molecular con-
centrations but also represent functions such transcriptional, enzymatic, or kinase activities. 
The network edges encode causal (i.e., directed) relationships between their nodes, which is 
attributed a positive sign when the activities of the connected nodes are changing similarly 
(e.g., increase in start node causes increase in end node) or a negative one when they change 
oppositely (e.g., increase in start node causes decrease in end node). The underlying biologi-
cal knowledge in these networks has been manually extracted from the scientific literature 
and encoded in the biological expression language (BEL), an ontology developed specifically 
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tigation of novel biological mechanisms and the biological mechanism-based assessment of 
exposure effects in a toxicity testing context. When investigating a biological system to dis-
cover novel mechanisms, the goal of the experimental data analysis and interpretation is to 
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sented as a biologically driven complexity reduction scheme delivering valuable, structured 
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innovative approaches based on crowdsourcing and literature mining (Section 3). The mod-
eling perspective will be broadened beyond networks of interacting molecules to present 
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other components of the multiscale modeling framework of an organism response to expo-
sure (Section 4). Finally, emerging concepts from the quantification of adverse outcome path-
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appealing in the context of “Bioinformatics in the Era of Post Genomics and Big Data.”
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large experimental transcriptomics data. It provides a quantification of the exposure-induced 
impact on the considered biological mechanisms, which is used to comparatively assess tox-
icity in concrete applications. Additionally, it constitutes the starting point for the network-
based systems toxicology developments that will be discussed later in this chapter.

Concretely, the implementation of the NPA methodology applicable to causal networks 
requires three distinct inputs in terms of experimental data and biological knowledge:

1. The differential gene expression values obtained from the transcriptomics data. Although 
we will consider them as resulting from “treatment versus control “pairwise comparisons, 
other types of contrasts can be used in the case of less trivial designs. These data are ob-
tained by applying the suitable statistical models at the individual gene level and extend 
over the full transcriptome, in line with the first aspect of the holistic perspective of sys-
tems biology discussed above. We used to call them “systems response profiles” [8, 22, 25].

2. A suitably organized collection of causal networks covering the essential biological mecha-
nisms of the test system response to the applied exposure treatment. Unlike other types of 
networks, causal biological networks contain nodes that not only describe molecular con-
centrations but also represent functions such transcriptional, enzymatic, or kinase activities. 
The network edges encode causal (i.e., directed) relationships between their nodes, which is 
attributed a positive sign when the activities of the connected nodes are changing similarly 
(e.g., increase in start node causes increase in end node) or a negative one when they change 
oppositely (e.g., increase in start node causes decrease in end node). The underlying biologi-
cal knowledge in these networks has been manually extracted from the scientific literature 
and encoded in the biological expression language (BEL), an ontology developed specifically 
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for causal biological networks. The current version of the causal biological network collec-
tion is publicly available on the causal biological network (CBN) database website [26, 27].  
The recent developments around the causal networks are discussed in Section 3.

3. “Transcriptional footprints” for a large fraction of the nodes contained in the causal networks. 
Transcriptional footprints are transcript abundance nodes that are connected to the causal net-
work nodes via signed directed edges, similar to the ones in the causal networks. They follow 
the “backward reasoning” approach, in which changes in molecular mechanisms encoded 
by causal network nodes (e.g., the activity of a transcription factor) can be deduced from the 
expression changes of their downstream-regulated genes. Clearly, these edges allow the tran-
scriptomics data to connect to the mechanistic networks, and the NPA calculations will con-
sist of the experimental differential gene expressions “propagating through the networks” to 
obtain the corresponding node- and network-level perturbations. In our assessment applica-
tions, we licensed the Selventa Knowledgebase to get a good coverage of the nodes of the caus-
al network collection in terms of transcriptional footprints [28]. Other options are possible: the 
small “BEL corpus” derived from the Selventa Knowledgebase [29], the networks contained 
in our publications [23, 24, 30], or the commercial IPA® “causal analysis” knowledgebase [31].

Given these three inputs, the NPA methodology performs the following computational steps 
to quantify the treatment-induced perturbations across a network (Figure 2):

1. Calculation of the “raw” perturbations for the nodes connected to the transcriptional foot-
prints. Essentially, this consists of performing an edge-based, weighted average of the 
differential gene expressions attached to the transcriptional footprint nodes [23]. Option-
ally, this calculation can be applied to a complete “aggregated” network if it is “causally 
consistent” (or “balanced” in the graph-theoretic language). This property means that the 
edge-based relative sign between any two nodes must be unambiguous (i.e., must not 
depend of the specific path relating the two nodes). As most networks do not satisfy this 
condition (e.g., negative feedback loops are not causally consistent), the aggregation op-
tion would require additional processing to be operative [32].

2. Calculation of the perturbations for all network nodes based on a constraint optimization 
problem. This is obtained by searching for node values that are “smooth” over the network 
and the transcriptional footprint edges (i.e., that have the smallest edge sign-corrected 
differences between connected nodes) while matching the differential gene expression val-
ues for the transcriptional footprint nodes. This problem has an exact solution that can be 
expressed in terms of the inverse of the adapted, signed Laplacian matrix of the network 
graph and of the “raw” node perturbations obtained previously.

3. Calculation of the NPAs using an edge-based summation. The summed values are the 
squared edge sign-corrected mean of the corresponding node (smoothed) perturbation val-
ues. As this value is always positive, it is important to examine the node-level perturbation  
values to determine whether the underlying biological mechanism is activated or inhibited 
as a consequence of the exposure treatment.

4. Calculation of three accompanying statistics to decide whether the obtained NPA value rep-
resents a true or a false positive. The first statistic is based on the biological variability prop-
agated from the uncertainties of the differential gene expression values: the 95% confidence 
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interval around the NPA value should not contain zero. The other two statistics test the 
relevance of the biological mechanism(s) encoded in the network by randomly reshuffling 
the network edges or the transcriptional footprints. This yields two null distributions for the 
network-level perturbation values. If the actual NPA value lies above the 95% quantile of a 
null distribution, it is considered to be statistically significant and labeled as “K-specific” or 
“O-specific,” respectively. Significant network perturbations correspond to the cases where 
all three statistical tests are successful.

By extending the calculation of NPAs to the full network collection contained in the CBN data-
base, we take advantage of its hierarchical structure to complete a useful, pyramidal, bottom-
up complexity reduction scheme (Figure 2). The grouping of networks into network families,  
themselves constituting the overarching collection, allows quantification and displays the 

Figure 2. The calculations of the network perturbation amplitudes (NPAs) and biological impact factor (BIF) in a 
bottom-up representation. The six layers correspond to the six steps (1–6) explained in the main text. Their respective 
inputs, mathematical processing, and results are schematically displayed from left to right. The “complexity” column 
gives an order of magnitude of the corresponding data size and illustrates the associated complexity reduction scheme.
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for causal biological networks. The current version of the causal biological network collec-
tion is publicly available on the causal biological network (CBN) database website [26, 27].  
The recent developments around the causal networks are discussed in Section 3.
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tions, we licensed the Selventa Knowledgebase to get a good coverage of the nodes of the caus-
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small “BEL corpus” derived from the Selventa Knowledgebase [29], the networks contained 
in our publications [23, 24, 30], or the commercial IPA® “causal analysis” knowledgebase [31].

Given these three inputs, the NPA methodology performs the following computational steps 
to quantify the treatment-induced perturbations across a network (Figure 2):

1. Calculation of the “raw” perturbations for the nodes connected to the transcriptional foot-
prints. Essentially, this consists of performing an edge-based, weighted average of the 
differential gene expressions attached to the transcriptional footprint nodes [23]. Option-
ally, this calculation can be applied to a complete “aggregated” network if it is “causally 
consistent” (or “balanced” in the graph-theoretic language). This property means that the 
edge-based relative sign between any two nodes must be unambiguous (i.e., must not 
depend of the specific path relating the two nodes). As most networks do not satisfy this 
condition (e.g., negative feedback loops are not causally consistent), the aggregation op-
tion would require additional processing to be operative [32].

2. Calculation of the perturbations for all network nodes based on a constraint optimization 
problem. This is obtained by searching for node values that are “smooth” over the network 
and the transcriptional footprint edges (i.e., that have the smallest edge sign-corrected 
differences between connected nodes) while matching the differential gene expression val-
ues for the transcriptional footprint nodes. This problem has an exact solution that can be 
expressed in terms of the inverse of the adapted, signed Laplacian matrix of the network 
graph and of the “raw” node perturbations obtained previously.

3. Calculation of the NPAs using an edge-based summation. The summed values are the 
squared edge sign-corrected mean of the corresponding node (smoothed) perturbation val-
ues. As this value is always positive, it is important to examine the node-level perturbation  
values to determine whether the underlying biological mechanism is activated or inhibited 
as a consequence of the exposure treatment.

4. Calculation of three accompanying statistics to decide whether the obtained NPA value rep-
resents a true or a false positive. The first statistic is based on the biological variability prop-
agated from the uncertainties of the differential gene expression values: the 95% confidence 
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interval around the NPA value should not contain zero. The other two statistics test the 
relevance of the biological mechanism(s) encoded in the network by randomly reshuffling 
the network edges or the transcriptional footprints. This yields two null distributions for the 
network-level perturbation values. If the actual NPA value lies above the 95% quantile of a 
null distribution, it is considered to be statistically significant and labeled as “K-specific” or 
“O-specific,” respectively. Significant network perturbations correspond to the cases where 
all three statistical tests are successful.

By extending the calculation of NPAs to the full network collection contained in the CBN data-
base, we take advantage of its hierarchical structure to complete a useful, pyramidal, bottom-
up complexity reduction scheme (Figure 2). The grouping of networks into network families,  
themselves constituting the overarching collection, allows quantification and displays the 

Figure 2. The calculations of the network perturbation amplitudes (NPAs) and biological impact factor (BIF) in a 
bottom-up representation. The six layers correspond to the six steps (1–6) explained in the main text. Their respective 
inputs, mathematical processing, and results are schematically displayed from left to right. The “complexity” column 
gives an order of magnitude of the corresponding data size and illustrates the associated complexity reduction scheme.
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exposure-induced biological impact in a more concise way, which is particularly useful in a 
comparative approach to toxicity assessment. These final two steps are the following:

5. Calculation of network family-level biological impact factors (BIF). The network families 
distribute the ~50 networks into five families based on their biological similarities: cell pro-
liferation, cellular stress, cell fate, pulmonary inflammation, and tissue repair/angiogenesis. 
The evaluation of their BIF consists first of filtering out the networks that are not significant-
ly perturbed and then summing the remaining NPA values with weights that take into ac-
count the number of network in each family and the nodes overlapping between networks.

6. Calculation of network collection-level BIF. This aims at providing balanced relative 
weights between the five network families so the main features of the biological systems 
response to the exposure treatment can be perceived easily. In that sense, the BIF repre-
sents a pan-mechanistic, quantitative metric for the exposure-induced effects measured at 
the molecular transcript level and “shaped” by the a priori chosen network collection from 
the CBN database [15, 30]. It represents the starting point for investigating the impacted 
biological mechanisms in a top-down approach.

Having presenting the NPA methodology, it is instructive to see how it compares to existing 
approaches providing network-level quantification. The causal biological networks used in 
the NPA calculations are usually composed of several molecular signaling pathways assem-
bled around common nodes. Generally, pathways have a simpler and somewhat more linear 
structure than networks, so their structure is not as important. As a consequence, it has been 
often disregarded in the published methodologies, which were primarily aimed at dealing 
with pathways. In a recent review recapitulating the network- and pathway-based method-
ologies developed over the last decade, only one category (out of three) takes into account 
the structure: the so-called pathway topology (PT) group [7]. We further observe a recurrent 
difference between the NPA and most PT methodologies: the goal of the quantification is the 
determination of the most relevant pathways or networks (compared to the other ones in the 
collection) to support the biological interpretation. This is achieved by sorting either abstract 
scores or enrichment p-values [33]. This approach corresponds to the abovementioned com-
petitive Q1 statistic, which suits the discovery rather than the assessment perspective, cor-
responding to systems toxicology [16, 17]. This also indicates that the NPA approach is closer 
to the self-contained Q2 statistic in the sense that it allows meaningful comparison of several 
treatments. In short, the NPA methodology provides an explicitly network-based quantifica-
tion scheme that inherently incorporates the self-contained Q2 statistic, allowing meaningful 
comparisons between the exposure effects on the same biological mechanism.

The NPA approach has been successfully employed across a range of toxicological questions 
of concern:

• Comparative assessment of biologically active substances to complement the standard tox-
icological endpoints. This was used for the preclinical assessment of a candidate modified-
risk tobacco product in comparison with conventional cigarettes [34–36].

• In vitro screening of multiple compounds in combination with the capacity of the high-
content screening technologies. This was applied to selections of environmental toxicants 
and nutraceuticals [37, 38].
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• Investigation of in vivo-in vitro translatability (red arrows in Figure 1c). The case of the xe-
nobiotic metabolism response to cigarette smoke exposure was investigated and supported 
the validity of in vitro testing [39].

• Classification of individual human subjects. A proof-of-principle application of the NPA 
methodology to individual subjects has been published [24], and the approach was bench-
marked during the sbvIMPROVER diagnostic signature challenge [40].

• Exploratory investigations of transcriptomics data. Examining the biological process ac-
tivities contained in the collection of causal networks provides an additional point of view 
already used several times [41–43].

In this section, we explained the NPA methodology as a core element of network-based sys-
tems toxicology. However, its validity also depends on the quality of input from causal net-
work collection available in the CBN database. In the following section, we discuss several 
innovative ways to ensure constant quality in order to consolidate the acceptance of the net-
work-based systems toxicology.

3. Enhancements of the causal network collection

The application of network-based systems toxicology requires the a priori identification of 
the biological mechanisms involved in the test systems response to the applied exposure  
(Figure 1c and d). This led to gradually assemble a structured collection of causal networks of 
high-quality standards, which has been deposited in the CBN database to be accessible to run 
the NPA calculations in concrete situations. The validity of the whole network-based systems 
toxicology approach depends heavily on the biological pertinence of the retained mechanisms 
and of the networks encoding them. In this section, we examine these validity conditions 
more closely and describe two recent efforts aimed at augmenting the biological pertinence 
and extending the biological contexts of the causal networks: a crowdsourced review of their 
content and the use of semi-automated text-mining tools.

Over last two decades, the ever-increasing use of transcriptomics technologies has resulted in 
compilations of a number of pathway resources aimed at associating biological insight to sets 
of differentially expressed genes: KEGG [44], Reactome [45], BioCarta [46], Wiki-pathways 
[47], SPIKE [48], UCSD signaling gateway [49], NCI pathway interaction database [50], or 
NetPath [51]. The parallel assembly of the CBN database was decided and justified by the 
requirement to satisfy higher-quality standards, which were not always met by the available 
pathway resources (Table 1 in [27]):

1. Explicitly accounting for the biological context by setting mechanistic boundaries in terms 
of species, tissue or cell type, and disease state

2. Supporting all the causal relationships encoded in the network edges by (at least) one ex-
plicit, literature-based statement

3. The use of BEL to encode the manually curated literature statements into a format that is 
both human-readable and computable and that stores the rich mechanistic and contextual 
information accurately

Developing Network-Based Systems Toxicology by Combining Transcriptomics Data…
http://dx.doi.org/10.5772/intechopen.75970

163



exposure-induced biological impact in a more concise way, which is particularly useful in a 
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5. Calculation of network family-level biological impact factors (BIF). The network families 
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The evaluation of their BIF consists first of filtering out the networks that are not significant-
ly perturbed and then summing the remaining NPA values with weights that take into ac-
count the number of network in each family and the nodes overlapping between networks.

6. Calculation of network collection-level BIF. This aims at providing balanced relative 
weights between the five network families so the main features of the biological systems 
response to the exposure treatment can be perceived easily. In that sense, the BIF repre-
sents a pan-mechanistic, quantitative metric for the exposure-induced effects measured at 
the molecular transcript level and “shaped” by the a priori chosen network collection from 
the CBN database [15, 30]. It represents the starting point for investigating the impacted 
biological mechanisms in a top-down approach.

Having presenting the NPA methodology, it is instructive to see how it compares to existing 
approaches providing network-level quantification. The causal biological networks used in 
the NPA calculations are usually composed of several molecular signaling pathways assem-
bled around common nodes. Generally, pathways have a simpler and somewhat more linear 
structure than networks, so their structure is not as important. As a consequence, it has been 
often disregarded in the published methodologies, which were primarily aimed at dealing 
with pathways. In a recent review recapitulating the network- and pathway-based method-
ologies developed over the last decade, only one category (out of three) takes into account 
the structure: the so-called pathway topology (PT) group [7]. We further observe a recurrent 
difference between the NPA and most PT methodologies: the goal of the quantification is the 
determination of the most relevant pathways or networks (compared to the other ones in the 
collection) to support the biological interpretation. This is achieved by sorting either abstract 
scores or enrichment p-values [33]. This approach corresponds to the abovementioned com-
petitive Q1 statistic, which suits the discovery rather than the assessment perspective, cor-
responding to systems toxicology [16, 17]. This also indicates that the NPA approach is closer 
to the self-contained Q2 statistic in the sense that it allows meaningful comparison of several 
treatments. In short, the NPA methodology provides an explicitly network-based quantifica-
tion scheme that inherently incorporates the self-contained Q2 statistic, allowing meaningful 
comparisons between the exposure effects on the same biological mechanism.

The NPA approach has been successfully employed across a range of toxicological questions 
of concern:

• Comparative assessment of biologically active substances to complement the standard tox-
icological endpoints. This was used for the preclinical assessment of a candidate modified-
risk tobacco product in comparison with conventional cigarettes [34–36].

• In vitro screening of multiple compounds in combination with the capacity of the high-
content screening technologies. This was applied to selections of environmental toxicants 
and nutraceuticals [37, 38].
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• Investigation of in vivo-in vitro translatability (red arrows in Figure 1c). The case of the xe-
nobiotic metabolism response to cigarette smoke exposure was investigated and supported 
the validity of in vitro testing [39].

• Classification of individual human subjects. A proof-of-principle application of the NPA 
methodology to individual subjects has been published [24], and the approach was bench-
marked during the sbvIMPROVER diagnostic signature challenge [40].

• Exploratory investigations of transcriptomics data. Examining the biological process ac-
tivities contained in the collection of causal networks provides an additional point of view 
already used several times [41–43].

In this section, we explained the NPA methodology as a core element of network-based sys-
tems toxicology. However, its validity also depends on the quality of input from causal net-
work collection available in the CBN database. In the following section, we discuss several 
innovative ways to ensure constant quality in order to consolidate the acceptance of the net-
work-based systems toxicology.

3. Enhancements of the causal network collection

The application of network-based systems toxicology requires the a priori identification of 
the biological mechanisms involved in the test systems response to the applied exposure  
(Figure 1c and d). This led to gradually assemble a structured collection of causal networks of 
high-quality standards, which has been deposited in the CBN database to be accessible to run 
the NPA calculations in concrete situations. The validity of the whole network-based systems 
toxicology approach depends heavily on the biological pertinence of the retained mechanisms 
and of the networks encoding them. In this section, we examine these validity conditions 
more closely and describe two recent efforts aimed at augmenting the biological pertinence 
and extending the biological contexts of the causal networks: a crowdsourced review of their 
content and the use of semi-automated text-mining tools.

Over last two decades, the ever-increasing use of transcriptomics technologies has resulted in 
compilations of a number of pathway resources aimed at associating biological insight to sets 
of differentially expressed genes: KEGG [44], Reactome [45], BioCarta [46], Wiki-pathways 
[47], SPIKE [48], UCSD signaling gateway [49], NCI pathway interaction database [50], or 
NetPath [51]. The parallel assembly of the CBN database was decided and justified by the 
requirement to satisfy higher-quality standards, which were not always met by the available 
pathway resources (Table 1 in [27]):

1. Explicitly accounting for the biological context by setting mechanistic boundaries in terms 
of species, tissue or cell type, and disease state

2. Supporting all the causal relationships encoded in the network edges by (at least) one ex-
plicit, literature-based statement

3. The use of BEL to encode the manually curated literature statements into a format that is 
both human-readable and computable and that stores the rich mechanistic and contextual 
information accurately
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4. Application of data-driven enhancement by analyzing suitable public or dedicated data-
sets using a complementing source of prior biological knowledge, such as the Selventa 
Knowledgebase, which contains more than two million curated relationships [28]

Note that the last feature is also relevant for augmenting the ensemble of transcriptional foot-
print edges, which were also extracted from the Selventa Knowledgebase in our assessment 
applications (see Section 2). Typically, the public dataset GSE44747 investigates the gene expres-
sion regulation by the activation of protein kinase C (“PKC”), and the molecular changes in 
this datasets can be causally related to the node act(p(SFAM:“PRKC Family”)) [52]. Whenever 
a sizable fraction of the genes regulated in this dataset are changed in response to an exposure 
treatment, the activation or inhibition of PKC can be inferred [28]. This example illustrates the 
transcriptional footprint-based “backward reasoning” necessary to connect the causal biological 
networks and the transcriptomics data in order to apply the NPA methodology.

In 2011, we published our first biological networks “Cell Proliferation” that are still part of the col-
lection that serves as the input for NPA and BIF calculations [53]. The initial mechanistic interest 
focused on the lung biology, and version 1.0 of the collection consisted of 108 assembled causal 
networks regrouped into five high-level functional families (cell proliferation 15 [53], cellular 
stress 7 [54], cell fate 34 [55], pulmonary inflammation 24 [56], and tissue repair/angiogenesis 9 
[57]). The design and assembly processes were the same for all the networks, each of them hav-
ing been defined by biological boundaries chosen to globally cover all of the essential biological 
processes and responses of healthy lung tissues (Figure 3). Since 2015, the CBN database website 
has provided free access to the full collection [27]. In addition to the original focus of inhalation 
toxicology covering the non-diseased respiratory tract tissues, causal networks for non-diseased 
vascular tissues, chronic obstructive pulmonary disease, and atherosclerosis plaque destabiliza-
tion have been assembled and published to enrich the covered biological contexts [58–60].

As mentioned above, the scientific acceptability was the main requirement during the assembly 
of the causal networks collection, which is freely available to the scientific community in the 
CBN database. This motivated additional and innovative crowdsourced verification initiatives to 
consolidate the accuracy of the biological mechanisms encoded in the networks. They took place 
in the framework of the network verification challenges of the systems biology verification initia-
tive (sbvIMPROVER NVC) [59, 61–63]. These challenges were based on a novel crowdsourcing 
approach by a large community of more than 50 contributors who were given tools to vote on 
various edges and nodes of the causal networks via a dedicated web interface [64]. A moderator 
supervised the votes for each network and made decisions to include or exclude nodes and edges 
based on community choices. The resulting 46 causal networks were made publicly available 
through the CBN website and constituted version 2.0 of the causal network collection organized 
along the same five high-level functional families as version 1.0 (cell proliferation 15, cellular 
stress 7, cell fate 34, pulmonary inflammation 26, and tissue repair/angiogenesis 11). Currently, 
the NVC platform supports a third crowdsourced network verification challenge for the liver 
xenobiotic metabolism [64]. Eventually, the new models will be shared via the CBN website [26].

As the original network assembly process involved significant efforts in manual literature 
 curation (Figure 3), the development of text-mining-based capabilities appeared as an 
appropriate  solution to increase the quantity of assembled causal networks while preserv-
ing their quality. A novel, semi-automated biological knowledge extraction workflow called 
the “BEL information extraction workflow” (BELIEF) was developed, which incorporates 

Bioinformatics in the Era of Post Genomics and Big Data164

 state-of-the-art linguistic tools for recognition of specific entities [65, 66]. It mines prese-
lected, unstructured scientific literature and enables its users to extract causal and correlative 
relationships that are subsequently transcribed into the computable and human-readable 
BEL format used in the CBN network collection. A web interface has been developed, as 
well, to facilitate its practical application [67]. The usefulness of the BELIEF workflow was 
assessed during the assembly of a network describing atherosclerotic plaque destabilization 
and containing 304 nodes and 743 edges supported by 33 PubMed literature references [65]. 
The comparison between the semi-automated and conventional curation processes showed 
similar results but with significantly reduced curation effort for the semi-automated process. 
It is currently applied to a variety of biological mechanisms extending beyond the initial 
focus of pulmonary biology (e.g., vascular tissues).

The high quality of CBN causal network collection provides a solid foundation for the net-
work-based systems toxicology approach. Supplementing its essentially manual assembly 
process, innovative crowdsourced verification initiatives have consolidated and updated the 
biological content of the networks. The development of the semi-automated BELIEF workflow 

Figure 3. Overview of the causal biological network assembly and enhancements. The CBN database website contains 
the initial hierarchically structured collection of biological networks describing the essential biological processes 
and responses of healthy lung tissues. The enhanced network versions resulting from the sbvIMPROVER network 
verification challenges are integrated in CBN, as well as the networks describing relevant response mechanisms in other 
biological contexts, which were obtained by the BELIEF semi-automated literature mining workflow.
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4. Application of data-driven enhancement by analyzing suitable public or dedicated data-
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has been beneficial not only directly, by speeding up the maintenance of the CBN collection, 
but also indirectly, by popularizing the use of causal networks in biomedical contexts beyond 
toxicological assessment [27].

4. Integration into the multiscale modeling of exposure responses

In the previous section, we saw that the enhancements of the causal network collection were 
opening new development opportunities for the approaches used in network-based systems 
toxicology. This leads to similar reconsideration of the molecular holistic approach underly-
ing the systems biology approach from a broader perspective—that of modeling an organism 
response to exposure in the toxicological context. Indeed, the organism response to exposure is 
a complex process, covering multiple space and time scales, for which modeling approaches of 
diverse complexities have been used. In this section, we discuss how the causal networks used 
in our holistic systems biology approach can be integrated into the quantitative toxicology/phar-
macology frameworks of absorption, distribution, metabolism, and excretion toxicity (ADMET) 
and physiologically based toxicokinetics (PBTK)/physiologically based pharmacokinetics 
(PBPK) modeling. This will not only reveal the approximations and limitations of the respective 
approaches but also eventually indicate where bridges between causal molecular networks and 
other modeling approaches can be built and which efforts would be required to achieve them. 
Paving the road for multiscale approaches constitutes a promising development perspective for 
improving the understanding of how potentially toxic substances interact with the human body.

ADMET belongs to the basic principles of pharmacology and toxicology and describes the kinet-
ics, dynamics, and toxicity of compounds within the human body following an exposure. The 
objective of such an approach is to estimate the toxicokinetic and metabolic profiles (Figure 4a). 
Obviously, a molecular dynamics approach resolving the trajectories of individual molecules from 
absorption to excretion is not achievable because of our insufficient understanding of the interplay 
between the numerous molecular mechanisms involved and, from a practical perspective, limited 
computational power. As a consequence, the replacement of the individual molecular trajectories 
by the corresponding mean density distributions and velocity fields—the so-called continuum 
approximation—appeared to be the most suitable approach to perform quantitative modeling in 
the toxicokinetic context. In the specific case of inhalation toxicology, the inclusion of additional 
assumptions about the interplay between liquid, vapor, and aerosol phases lead to a well-defined 
computational fluid dynamics (CFD) scheme, which quantitatively describes the deposition of 
aerosol particles in the nasal and other respiratory cavities by calculating the airflows and veloci-
ties [68]. Therefore, a fine description of the dose reaching respiratory tissues (Figure 4b) can be 
achieved through CFD partial differential equation systems in space and time variables.

The description of the dynamics of each molecule when it reaches a cell can be done, for exam-
ple, using a stochastic description of enzymatic activities through the chemical master equation 
(Figure 4b). While appealing on a local level, those approaches are not straightforward in global 
application to a whole-body model. To that end, simplifying the complex human body into a lim-
ited number of connected compartments underlying PBTK/PBPK modeling is usually explored 
for evaluating levels of a given substance in various tissues or organs (Figure 4c). PBTK/PBPK can 
also be linked to deposition CFD models, as discussed by some authors [69–71]. Metabolism is 
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further simplified by assuming a well-stirred volume or that conversion of an enzyme-substrate 
complex to an enzyme-product complex is instantaneous. Such a description of the enzymatic 
and metabolic dynamics reduces them to a set of ordinary differential equations (ODE) in time.

In general, PBTK/PBPK-derived ODE systems involve many parameters that are not necessar-
ily accessible to researchers, and an analytical study of the system may be required to estimate 
them. For that purpose, assuming steady state, ODEs can be represented semiquantitatively by 

Figure 4. The multiscale modeling framework of the human body response to toxicological exposure. The sequence from 
panels (a) to (e) spans several space and time scales, for which multiple modeling approaches are used. In order to make 
them applicable, simplifying assumptions are necessary at each step (blue arrows), and the resulting model parameters 
must be determined experimentally. From this perspective, the signed directed graphs (SDGs) underlying the network-
based system toxicology approach can be integrated into a broader multiscale response modeling framework.
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a signed directed graph (SDG) derived from the Jacobian matrix of the ODE system evaluated  
at its steady-state solution (Figure 4d) [72]. In this context, the organismal response to an expo-
sure is viewed as a perturbation of its steady state, which is characterized by the associated 
SDG encoding the time directionality and relative signs of the perturbations between all pairs 
of connected nodes. Although such an SDG is derived in the PBTK/PBPK context, in principle, 
other SDGs can be obtained similarly [73]. This is accomplished when a higher resolution of 
the description of molecular mechanisms involved in the response can be obtained from the 
scientific literature. This is exactly the case for the biological processes contained in the causal 
networks presented in the previous section, as we know how they integrate into the broad 
quantitative toxicology/pharmacology modeling frameworks built around ADMET and aimed 
at describing the organismal response to exposure in its full complexity.

In this short excursion aimed at broadening the modeling scope beyond molecular systems 
biology, we saw several approaches to quantify the response to exposure. Their validity 
ranges covered specific space and time scales, while a higher complexity often demanded 
more and more parameters to be experimentally determined to make the model applicable. 
As a consequence, building bridges between modeling scales represents appealing develop-
ment directions to achieve a more integrated understanding of an organism response to expo-
sure. However, the effort required to preserve the applicability of the resulting models are 
substantial, and in the last section, we will examine a tentative, multiscale approach that is 
acquiring an increasing interest the context of modern (twenty-first century) toxicology.

5. Development of quantitative adverse outcome pathways

In the previous sections, we have described NPA as a core element of network-based systems 
toxicology. We then saw two extensions: new networks contexts and extended modeling 
framework. In this final section, we propose a combination of these elements in terms of a 
network-based approach to qAOPs. This direction offers a novel development opportunity that 
needs to incorporate the predictive aspect at population level, which is to be contrasted to the 
a posteriori approach of test system data-driven assessment discussed up to now (Figure 1c). 
This feature requires an adapted approach to select the relevant biological mechanisms as well 
as the development of quantitative, multiscale modeling approaches of the suitable complexity.

Starting from ecotoxicology and quickly gaining popularity in human toxicology, adverse out-
come pathways (AOP) have become a valuable means to model exposure effects. Similar to 
the network models, AOPs organize existing, scattered literature knowledge into a structured  
representation with the aim to construct a linear sequence of “key events” (KE) from the initial 
interaction between a chemical and the biological system—the molecular initiating event (MIE)—
to the individual and population-level adverse outcome [74] (Figure 5). We have contributed to 
the development of two AOPs for the common disorders resulting from long-term smoking and 
published them in the AOP wiki [75]. The first AOP maps the events from epidermal growth fac-
tor receptor activation by oxidative stress to decreased lung function [76], and the second AOP 
illustrates the different steps that are required for oxidative stress to lead to disruption in endothe-
lial nitric oxide bioavailability and, finally, to hypertension [77]. These AOPs were built following 
the requirements by the Organization for Economic Co-operation and Development (OECD) [78]. 
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One avenue to network-based systems toxicology is to build BEL models that represent these 
events. The first BEL model suite is underway and describes the biological processes involved 
in impaired mucociliary clearance. It is foreseen to be published under an SBVimprover NVC in 
2018 [64].

While the above effort aims at identifying the mechanistic biological knowledge underly-
ing the chosen AOPs, the parallel development of the associated quantitative modeling 
approaches needs to be moved forward. It was anticipated to follow three steps to yield a 
“dynamic adverse outcome pathway” [79]:

1. Assembly and quantification of causal mechanistic networks

2. Development of dynamic models linking exposure to the organ-level responses

3. Simulation of the population-level effects of an exposure

The importance of this endeavor was underlined by the fact that the achievement of Step [3] 
was explicitly promoted as “the ultimate goal of systems toxicology.” As Step [1] has been com-
pleted with the CBN database and the development of the NPA methodology, the attention 
now focuses on Steps [2] and [3], which have to incorporate the predictive capacity of the future 
qAOP. Typical useful resources in this context are the BioModels database containing hundreds 
of computational models of biological processes (Step [2], [80]) as well as the “mechanistic axes 
population ensemble linkage” algorithm, which enables the creation of large sets of mechanisti-
cally distinct virtual humans that, upon simulated exposure, statistically match the prevalence 
of phenotypic variability reported in human population sample studies (Step [3], [81]).

Given the network-based system toxicology components presented in this chapter, several 
directions could be considered to support the qAOP development. Typically, appropriate 
transcriptomics datasets could be identified and used for applying NPA quantification to 
causal networks representing the biological mechanisms underlying one or more KE and their 
relationships. Although the time dependence is not explicit in the SDGs associated to the net-
works, their causal characteristic can provide information about the time direction based on 
the sequence of causally related perturbations. As during the assembly of the CBN network 
collection, the use of transcriptomics data is expected to improve the accuracy of the networks. 
In the qAOP context; the usual “treatment vs. control” experimental design might be advan-
tageously replaced by a time course design, which can reveal (part of) the time evolution of 
the relevant perturbed mechanisms. We may also consider the possibility of calculating NPA 
at individual level, which, as a consequence of its complexity reduction property, yields better 
between-class separations in classification contexts [24]. This could be used to more accurately 
model the population-level distributions of the exposure-induced perturbations.

Figure 5. The structure of an adverse outcome pathway (AOP).
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To conclude on a more concrete note, we show the “real-life” example of a simple qAOP devel-
oped for risk assessment in ecotoxicology: the connection between the inhibition of cytochrome 
P450 19A aromatase (the MIE) and the population level decreases of the fish fathead minnow 
(the adverse outcome) [82]. Concretely, the easily collected measures of chemical inhibition of 
the rate-limiting steroidogenic aromatase enzyme are used to predict reductions in egg pro-
duction and, subsequently, population size of the fish. The quantitative modeling of the asso-
ciated sequence of events was achieved by linking three discrete models describing different 
components of the AOP, from the MIE (aromatase inhibition) through five intermediate KEs, 
to impacts of regulatory interest (fecundity, population size). While the qAOP was developed 
based on experiments with fish exposed to the aromatase inhibitor fadrozole, a toxic equivalence 
calculation allowed to predict the effects of another untested aromatase inhibitor, iprodione.

This example showed that as long as their main elements are well chosen, qAOPs do not need to be 
“complicated,” as it would have been expected from a pathway covering multiple levels of biologi-
cal organization (i.e., from molecules to population levels). This observation effectively illustrates 
the trade-off that needs to be found during qAOP development between biological accuracy, mod-
eling complexity, and practical value in terms of predictive capacity. All three aspects are equally 
important for the validity of the outcome, as qAOPs are meant to play a central role in regulatory 
decision-making based on twenty-first-century toxicology approaches to risk assessment.

6. Conclusions

In this incursion into the field of network-based systems toxicology, we have seen how origi-
nal approaches were used and developed to provide innovative tools for assessing the health 
risks associated with the exposure to chemical compounds of uncertain safety. The application 
of systems biology principles to the assessment of exposure-induced responses involved the 
generation of genome-wide transcription profiles. These large datasets were processed using a 
combination of standard bioinformatics tools and ad hoc methodologies following a network-
based framework reflecting the holistic perspective of systems biology. This approach pro-
vided an implementation of the NSR principles and, in particular, supported the 3Rs initiative 
aimed at reducing animal use in research. We described in more detail the NPA methodology 
suitable for the particular type of causal networks using the “backward reasoning” approach. 
Combined with the collection of causal networks available on the CBN website, NPA enables the  
quantification of exposure-induced perturbations of the mostly molecular biological mechanisms 
described by the networks. This provided a quantitative assessment of the biological impact 
resulting from toxicological exposure treatments and offered multiple application possibilities. 
Turning to the current developments of network-based systems toxicology, we first mentioned 
the quality improvement of the CBN causal network collection using crowdsourcing initiatives 
(SBVimprover) and the extension to new biological contexts enabled by the application of litera-
ture mining tools that partially replace the manual curation process needed to assemble high-
quality causal networks. After integrating the network-based systems biology approach into the 
multiscale modeling of exposure responses, we discussed the qAOP as a promising development 
avenue for network-based systems toxicology. Its expected advantageous use in the regulatory 
decision-making context represents an appealing perspective that justifies the past, current, and 
certainly future efforts deployed in the development and applications of systems toxicology.
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To conclude on a more concrete note, we show the “real-life” example of a simple qAOP devel-
oped for risk assessment in ecotoxicology: the connection between the inhibition of cytochrome 
P450 19A aromatase (the MIE) and the population level decreases of the fish fathead minnow 
(the adverse outcome) [82]. Concretely, the easily collected measures of chemical inhibition of 
the rate-limiting steroidogenic aromatase enzyme are used to predict reductions in egg pro-
duction and, subsequently, population size of the fish. The quantitative modeling of the asso-
ciated sequence of events was achieved by linking three discrete models describing different 
components of the AOP, from the MIE (aromatase inhibition) through five intermediate KEs, 
to impacts of regulatory interest (fecundity, population size). While the qAOP was developed 
based on experiments with fish exposed to the aromatase inhibitor fadrozole, a toxic equivalence 
calculation allowed to predict the effects of another untested aromatase inhibitor, iprodione.

This example showed that as long as their main elements are well chosen, qAOPs do not need to be 
“complicated,” as it would have been expected from a pathway covering multiple levels of biologi-
cal organization (i.e., from molecules to population levels). This observation effectively illustrates 
the trade-off that needs to be found during qAOP development between biological accuracy, mod-
eling complexity, and practical value in terms of predictive capacity. All three aspects are equally 
important for the validity of the outcome, as qAOPs are meant to play a central role in regulatory 
decision-making based on twenty-first-century toxicology approaches to risk assessment.

6. Conclusions

In this incursion into the field of network-based systems toxicology, we have seen how origi-
nal approaches were used and developed to provide innovative tools for assessing the health 
risks associated with the exposure to chemical compounds of uncertain safety. The application 
of systems biology principles to the assessment of exposure-induced responses involved the 
generation of genome-wide transcription profiles. These large datasets were processed using a 
combination of standard bioinformatics tools and ad hoc methodologies following a network-
based framework reflecting the holistic perspective of systems biology. This approach pro-
vided an implementation of the NSR principles and, in particular, supported the 3Rs initiative 
aimed at reducing animal use in research. We described in more detail the NPA methodology 
suitable for the particular type of causal networks using the “backward reasoning” approach. 
Combined with the collection of causal networks available on the CBN website, NPA enables the  
quantification of exposure-induced perturbations of the mostly molecular biological mechanisms 
described by the networks. This provided a quantitative assessment of the biological impact 
resulting from toxicological exposure treatments and offered multiple application possibilities. 
Turning to the current developments of network-based systems toxicology, we first mentioned 
the quality improvement of the CBN causal network collection using crowdsourcing initiatives 
(SBVimprover) and the extension to new biological contexts enabled by the application of litera-
ture mining tools that partially replace the manual curation process needed to assemble high-
quality causal networks. After integrating the network-based systems biology approach into the 
multiscale modeling of exposure responses, we discussed the qAOP as a promising development 
avenue for network-based systems toxicology. Its expected advantageous use in the regulatory 
decision-making context represents an appealing perspective that justifies the past, current, and 
certainly future efforts deployed in the development and applications of systems toxicology.
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